

www.ingenieria.uda.cl 20 (2006) 41-47

Petrografía, mineralogía y fabrica de una anfibolita proveniente del complejo metamórfico Quebrada Sama (~21°30'S, 68°50'W), Sierra de Moreno, norte de Chile

Susanne Griem-Klee¹, Hans Niemeyer², Udo Zimmermann³

1 Universidad de Atacama, Copiapó, Chile 2 Universidad Católica del Norte, Antofagasta, Chile 3 University of Johannesburg, Johannesburg, Southafrica

sgriem@.uda.cl (S. Griem-Klee)

Resumen

Con el objetivo de conocer mejor la evolución tectono-metamórfica del basamento del norte de Chile y particularmente del complejo metamórfico Quebrada Sama expuesto en la Sierra de Moreno, se ha estudiado la petrografía, mineralogía y fábrica de una roca anfibolítica proveniente de este complejo. La anfibolita se caracteriza por una foliación penetrativa (sf1) formada por la alineación de los componentes principales de la roca siendo anfíbol, plagioclasa y cuarzo. Los anfíboles se presentan en dos tipos morfológicos: un tipo poicilítico de grano medio y un tipo pobre en inclusiones de grano pequeño. La diferencia morfológica no se refleja en variaciones de la composición de los anfíboles. Los anfíboles han sido clasificados como cálcicos, la mayoría de ellos siendo magnesio-hornblendas y ferro-hornblendas. Las plagioclasas poseen una composición intermedia (X_{An} = 0,49, X_{Ab} = 0,49, X_{Or} = 0,02). La composición relativamente uniforme de los dos distintos tipos morfológicos de anfíboles y la ausencia de anfíboles químicamente zonados señalan un crecimiento bajo condiciones metamórficas estables.

Palabras claves: anfíbol, complejo metamórfico Quebrada Sama, basamento, norte de Chile.

Abstract

For the purpose to better understanding of the tectono-metamorphic evolution of the basement rocks of northern Chile and particularly of the metamorphic complex Quebrada Sama exposed in the Sierra de Moreno the petrography, mineralogy and fabric of an amphibolitic rock forming part of this complex has been studied. The amphibolite is characterized by a penetrative foliation (sf₁) produced by the orientation of the principal mineral components so as amphibole, plagioclase and quartz. Two morphological types of amphiboles have been observed: a poikilitic type of medium grain size and another type of small grain size and with few or lacking inclusions. The morphological difference doesn't correspond to compositional variations. The amphiboles have been classified as calcic, mostly being magnesio-hornblendes and ferro-hornblendes. The plagioclases are characterized by an intermediate composition ($X_{An} = 0,49$, $X_{Ab} = 0,49$, $X_{Or} = 0,02$). The relatively uniform composition of the two morphologically different amphibole types and the lacking of chemically zoned amphiboles indicate a growth of these minerals under stable metamorphic conditions.

Keywords: amphibole, metamorphic complex Quebrada Sama, basement, northern Chile.

1. Introducción

1.1 Antecedentes generales

El estudio de las asociaciones minerales y fábricas metamórficas de las rocas del basamento del Norte de Chile proporciona un mejor conocimiento de la evolución tectonometamórfica pre-mesozóica del margen occidental de Gondwana (de Sudamérica, de Proto-Sudamérica).

El área de estudio se sitúa en el sector Quebrada Sama (fig. 1) formando parte de la Sierra de Moreno ubicada aproximadamente 100 km al norte de Calama (fig. 1) y morfológicamente constituyendo el borde oriental de la Precordillera. La Sierra de Moreno se puede considerar como una estructura tipo horst: en el oeste se pone en contacto con rocas vulcano-sedimentarias del Jurásico a través de la falla Oeste orientada en dirección nornordeste -sudsudoeste e inclinada fuertemente hacia el este, en el este está limitado por la falla Arca de inclinación hacia el oeste (Skarmeta, 1983).

Figura 1. Mapa geológico del área de estudio (sector Quebrada Sama). La localidad de la roca anfibolítica está señalada.

En base de las edades mínimas neoproterozóicas (U-Pb en zircones) del basamento expuesto en la Sierra de Moreno y particularmente en la Quebrada Choja 68°53′W) (~21°04'S, ubicada aproximadamente 50 km al norte del sector Ouebrada Sama Loewy et al. (2004)atribuyen el basamento de la Sierra de Moreno al dominio central del bloaue Arequipa-Antofalla (fig. 2). Debido a su posición en el margen occidental de Sudamérica y las edades de sus porciones más antiguas el bloque Arequipa-Antofalla ocupa un rol importante en la reconstrucción del margen proterozóico-paleozóico de Gondwana.

Figura 2. Dominios del bloque Arequipa-Antofalla según Loewy et al. (2004).

1.2 Geología

El objeto de estudio es una roca anfibolítica insertada en una secuencia metasedimentaria calco-silicatada (fig. 1) que en conjunto con esquistos migmatíticos, esquistos micáceos y cuerpos anfibolíticos constituye complejo metamórfico el Quebrada Sama reconocido por Venegas y Niemeyer (1978). Cuerpos pegmatíticos y dioríticos de grandes volúmenes han emplazado en el complejo. En el este el complejo metamórfico Quebrada Sama se

pone en contacto con las rocas volcanosedimentarias del Jurásico a través de la falla oeste, en el este está emplazado por el plutón Pinchal de edad Paleozóica Superior y cubierto por rocas piroclásticas de la Terciaria.

1.3 Objetivos

Se quiere conocer mejor la evolución tectono-metamórfica del complejo a través del estudio de la asociación mineral y de la fabrica metamórfica de la anfibolita.

En base de su morfología se distinguen dos tipos de anfíboles en la roca anfibolítica. El estudio está enfocado en evaluar si estos anfíboles morfológicamente distintos difieren en su composición química. En caso afirmativo se surgiere distintos eventos de formación, en caso negativo se supone que ambos tipos de anfíboles han sido crecidos bajo las mismas condiciones metamórficas.

El conocimiento de la composición química de los anfíboles y de las plagioclasas cogenéticas permitirá estimar las condiciones de presión y temperatura de formación de este par mineral.

2. Metodología

La descripción petrográfica y mineralógica ha sido realizada a través de cortes transparentes utilizando un micropolariscopio (Olympus, CX31).

Los análisis de microsonda (Cameca 355 en SPECTRAU, University of Johannesburg) en cortes transparentes, bien pulidos de la roca anfibolítica proporcionan la composición química de los minerales expresadas en óxidos de elementos mayores.

En el caso de los anfíboles se han analizadas las concentraciones de los elementos SiO₂, TiO₂, Al₂O₃, Cr₂O₃, FeO, MnO, MgO, CaO, Na₂O, K₂O, y se ha calculado la fórmula mineral en base de 23 oxígenos. La microsonda no distingue entre el Fe²⁺ y Fe³⁺. Para estimar las proporciones de Fe²⁺ y de Fe³⁺ se ha aplicado el método propuesto por Schuhmacher in Leake et al. (1997). La clasificación de los anfíboles se basa en la nomenclatura propuesta por Leake et al.(1997).

En el caso de los feldespatos se consideraron las concentraciones de los elementos SiO₂, Al₂O₃, FeO, MnO, MgO, CaO, Na₂O, K₂O. La formula mineral de los feldespatos ha sido calculado en base de 8 oxígenos.

3. Desarrollo

3.1 Petrografía, mineralogía y fabrica de la anfibolita

La roca anfibolítica ha sido tomada en la sección norte de la Quebrada del Burro cercana a la conjunción de esta quebrada con la Quebrada Sama (fig. 1).

La anfibolita es una roca principalmente de grano pequeño (tab. 1), finamente laminada y plegada. En las láminas milimétricas de color verde oscuro a negro verdoso abundan los anfíboles, las láminas blancas del mismo espesor se componen básicamente de feldespato y cuarzo. Microscópicamente la foliación penetrativa de la roca ($sf_1 = 0.87/30$) se debe a la alineación de los anfíboles de grano pequeño (fig. 3) y de los feldespatos y cuarzos en las distintas laminas macroscópicamente visibles. En parte los longitudinales de los cuarzos eies y feldespatos parecen estar alineados v paralelos a los bordes de las laminas. Morfológicamente se distinguen los dos siguientes tipos de anfíboles. Un tipo de anfíbol posee un tamaño de grano en torno a 2,5mm (de grano medio) y es poicilítico albergando inclusiones de cuarzo (fig. 3). El otro tipo se caracteriza por un tamaño de grano variando entre 250 y 750 □m y por un bajo contenido en inclusiones (fig. 4). Ambos tipos son idiomórficos a hipidiomórficos.

Minerales accesorios de la anfibolita incluyen titanita, epidota, clorita y fases opacos.

Tabla 1. Tamaños de grano de los mineralesprincipales de la anfibolita

Tipo mineral	Tamaño de grano en μm
Hbl verde sin- deformativa	250 - 750
Hbl verde poicilítica	+/- 2500
Cuarzo	50 - 200
Plagioclasa	100 - 200
Titanita	25 - 100

Figura 3. Mg-hornblenda poicilítica en corte transparente (ppl) y en gráfico Mg/(Mg + Fe²⁺) versus Si. Análisis a y b en anfíboles situados al borde del anfíbol poicilítico.

Figura 4. Fotos de un corte transparente de la anfibolita (GKL40) con distintos tipos de anfíboles cálcicos.

3.2 Composición química de los anfíboles

En los gráficos de la figura 5 los valores de los elementos están expresados en átomos por unidad de fórmula (a.p.f.u.).

Los valores de K y Na (fig. 5a) muestran pequeñas variaciones, entre 0,03 y 0,23 para K y entre 0,07 y 0,45 para Na. Valores mayores de K corresponden con valores elevados de Na. Los valores de TiO_2 (fig. 5b) expresados en porcentaje de peso (wt%) se mueven entre 0,33 y 1,96, los valores de Fe/(Fe + Mg) se encuentran en un estrecho intervalo entre 0,45 y 0,58. Valores altos de Si corresponden con valores bajos en Al y viceversa (fig. 5c). Si y Al se caracterizan por una correlación negativa con un coeficiente de correlación = -0,93. Los valores de Al total varían entre 1,11 y 2,30, los valores de Si fluctúan entre 6,35 y 7,73. Los valores de Mg (fig. 5d) están entre 1,84 y 2,65. La correlación entre Al y Mg es negativa y fuerte, si bien un poco menos pronunciada en comparación con Al y Si (coeficiente de correlación = -0,88).

Figura 5. Distribución de elementos seleccionados en los anfíboles de la muestra anfibolítica (a.p.f.u. = átomos por unidad de formula).

La composición química de los anfíboles es relativamente uniforme, aunque en algunos de ellos se han detectado variaciones no sistemáticas. No se aprecian variaciones en el contenido de los elementos analizados que permitirían distinauir genéticos diferentes grupos entre los anfíboles (fig. 5). Los anfíboles son del grupo anfíboles cálcicos. de los Seqún la clasificación propuesta por Leake et al. (1997) y aplicando el método de estimación de Fe³⁺ y Fe²⁺ presentado por Schuhmacher in Leake et al. (1997) los anfíboles son mayoritariamente magnesio-hornblendas y ferro-hornblendas (fig. 6). Algunos se caracterizan por contenidos $(Na + K)_A > 0.5$ conduciendo hacia una clasificación como ferro-edenitas y ferro-pargasitas (fig. 7).

Figura 6. Diagrama de clasificación de los anfíboles cálcicos con (Na + K)_A < 0,50, según Leake et al. (1997).

Figura 7. Diagrama de clasificación de los anfíboles cálcicos con $(Na + K)_A \ge 0,50$, según Leake et al. (1997).

No se observaron variaciones sistemáticas de los elementos a lo largo de perfiles trazados por ambos tipos de anfíboles desde un borde atravesando el núcleo hacia el borde opuesto (fig. 3).

3.3 Composición química de los feldespatos

La composición química de los feldespatos está ilustrada en el diagrama ternario Or – Ab – An (fig. 8). La composición promedio de los feldespatos es $X_{An} = 0,4849$, $X_{Ab} = 0,4930$, $X_{Or} = 0,0222$ correspondiente a una plagioclasa de composición intermedia.

Figura 8. Composición de los feldespatos en el diagrama ternario Or-Ab-An.

4 Conclusiones

Morfológicamente se distinguen dos grupos de anfíboles en la roca anfibolítica: los anfíboles poicilíticos de grano medio y los anfíboles pobres en inclusiones y de grano pequeño. El crecimiento de los anfíboles se relaciona con una fase de deformación temprana (D_1) responsable para la foliación penetrativa (sf_1) visible en la anfibolita. Los dos grupos morfológicos no difieren sistemáticamente en su composición química. Dentro del grupo de los anfíboles cálcicos la corresponde magnesiomavoría а hornblendas y ferro-hornblendas.

La ausencia de anfíboles con una distribución de elementos en zonas indica un crecimiento bajo condiciones p-T estables. Por consiguiente ambos tipos morfológicos de anfíboles han sido formados en un solo evento metamórfico con condiciones p-T permaneciendo estables durante el crecimiento de los anfíboles. El grado metamórfico ha alcanzado la facies anfibolítica.

El próximo paso a realizar consiste en estimar las condiciones de presión y temperatura de formación del par mineral anfíbol-plagioclasa a través de su composición química.

5. Referencias

Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schuhmacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., E.J.W., Youzhi, Whittaker, G. (1997). Nomenclature of amphiboles: report of the amphiboles subcommittee on of the International Mineralogical Association, commission on new minerals and mineral names. - The Canadian Mineralogist, Vol. 35, pp. 219-246.

Loewy, S.L., Connelly, F. N. & Dalziel, I.W.D. (2004). An orphaned basement block: The Arequipa-Antofalla Basement of the central Andean margin of South America. Geological Society of America Bulletin, January/February 2004, 171-187.

Skarmeta, J. (1983). The structural geology of the Sierra de Moreno, Northern Chile. Ph.D. Thesis (Unpublished), University of London, 299 p.

Venegas, R. and Niemeyer, H. (1982). Noticia sobre un probable precámbrico sedimentario-metamórfico el borde en occidental de la Puna al Norte de Chuquicamata. Actas Tercer Congreso Geol. Chileno, Arica, III, F143-F154.