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Resumen

En este artículo presentamos una nueva formula recurrente para una suma finita que involucra la 
secuencia de Fibonacci. Además, indicamos un algoritmo para calcular la suma de una serie de 
potencias relacionadas a las series de Fibonacci, sin el uso del teorema de diferenciación término 
por término.
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_____________________________________________________________________________

Abstract

In this  paper  we present a  new formula  for  a  recurring finite  amount  involving the Fibonacci 
sequence. In addition, we indicated an algorithm to calculate the sum of a series of powers related 
to the Fibonacci series, without the use of theorem differentiation term by term.
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1. Introduction

The Fibonacci sequence is one of the 
most famous numerical sequences in 
mathematics. It is defined in  a recursive 
way: the first two terms are given and the 
following ones are defined as the sum of 
the two  preceding ones. Mathematically 
speaking:

F0=0,F1 =1,Fr=Fr-1+Fr-2,r ≥ 2.

The first terms are:  1, 1, 2, 3, 5, 8, 13, 
21, . . 

This sequence comes from the single 
pair of rabbits’ progeny problem, which was 
early proposed by  Leonardo de Pisa 
(Fibonacci) at the Liber Abacci of 1202. An 
intriguing point is  that this sequence 
appears in many problems from 
Mathematics as well as in Botanic, 
Crystallography, Computer Science,  etc 
[1]. 

Consider the following finite sum 
involving the Fibonacci sequence, where  x 
is a real number, m and n

1

.
n

m r
r

r
r F x

=
∑  

[1.1]

Many authors have been seeking to 
establish a sum formula for [1.1]  (see [2], 
[3], [4],[5]). In this article we state a sum 
formula for [1.1] that we believe may be 
considered as a new result.  Consider now 
the power series associated to [1.1]:

1

.m r
r

r
r F x

+ ∞

=
∑ [1. 2]

It  is  not  difficult  to  demonstrate 
that  the  (1.2)  converges  for  all m  and 
all  x ∈  (−1/φ, 1/φ),  in  which 

(1 5) / 2φ = +  is the golden ratio, a well-
known constant associated with 
Fibonacci’s sequence  [1].

 The  question  hereby  interposed  is 
the  following:   within  its  convergence 
interval,  is  there  a  formula for  the  sum 
of  the  [1.2] series?   An  answer  to  this 
question  is   obtained  by  invoking the 
term-by-term  differentiation theorem  for 
power series. Actually, such an equation is 
obtained by using D = xd/dx  operator m 
times into the known identity 

2
1 1

m r
r

r

xr F x
x x

+ ∞

=

=
− −∑

If  we define

1
( , ) m r

r
r

S x j r F x
+ ∞

=

= ∑
a recurrence  formula can be obtained by 
the following way:

[ ]
2( ,0)

1
( , ) ( , 1) ,   1,..., .

xS x
x x

S x j D S x j j m

 = − −
 = − =

[1.3]

Example 1.1 Using the (1.3) algorithm, we 
can calculate the numeric series’ sum

1 3
r
r

r

rFS
+ ∞

=

= ∑ [1.4]

In  fact,  if  2( ,0) /(1 )S x x x x= − − then 
3 2 2( ,1) (́ ,0) ( ) /(1 ) .S x xS x x x x x= = + − − Hence, 

taking x = 1/3 in S(x, 1), we get the sum 
S = 6/5 for the (1.4) series.

Example 1.2 Try now to compute the 
numeric series’ sum below by using the 
same algorithm:

50

1 3
r

r
r

r FS
+ ∞

=

= ∑

The [1.3] algorithm’s problem is, for 
each single step, higher computation cost in 
order to differentiate a  function.  The 
example 1.2 points out this difficulty.  In 
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this paper we obtain another recurrence 
formula to calculate the sum of [1.2].

The  article  is   henceforth 
organized  as  follows:   In  the  second 
section  we  present  our  main result,  a 
recurrence  formula for the [1.2] finite 
sum and we show that it recovers some 
results on finite summation  formulas 
involving the Fibonacci sequence.  The 
third section was intended to rigorously 
proof our formula.  In the  fourth section 
we state  an algorithm to compute the 
sum of [1.2]  without the  use of 
derivatives. Finally, in the fifth section, we 
give some comments about the results 
and future possibilities.

2. Finite sums

Our main result in this section is the 
theorem below:

Theorem 2.1.  Let x 
∈

 R,  1 − x − x
2  ≠

 0 
be given.  Then the following finite recorrence 
formula holds 

( )

( )

1
2

1 1 1

1 22 1
1

2 2
1 1

1 1
1

.
1 1

n m n
im r m i r

r r
r i r

m n nm n
n nm i r

r
i r

m
r F x r F x

ix x

n F x F xmx r F x
ix x x x

+ −

= = =

+ +−
+−

= =

 = − + − −  
+ + − − − − − 

∑ ∑ ∑

∑ ∑
[2.1]

As  consequence  of  theorem  2.1  we  obtain 
many  closed  formulas  for  finite  sums 
involving  Fibonacci  summation.  In fact, 
taking x = 1 in (2.1) we obtain the 
following finite summation:

( )
1

1
2

1 1 1 1 1
1 .

n m n m n
im m i m m

r r r n
r i r i r

m m
r F r F r F n F

i i

−
− −

+
= = = = =

   
= − − +   

   
∑ ∑ ∑ ∑ ∑

[2.2]

We believe that (2.2) is a new formula for 
(1.1).  From (2.2) we can derive closed for 
some special cases  of m.  For instance, 
taking m = 1 in (2.2) we obtain

( )
1 1 1

1 1
2

1 1 1 1 1

1 1
1 .

n n n
i i i

r r r n
r i r i r
rF r F r F nF

i i

−
− −

+
= = = = =

   
= − − +   

   
∑ ∑ ∑ ∑ ∑

[2.3]

It is well known (see [4]) that 

1

1
1

1.
n

r n
r
F F

−

+
=

= −∑ [2.4]

Thus, from (2.3) and (2.4) we conclude 
that

1

2
1 1 1

2 1 2          1 1 .

n n n

r r r n
r r r

n n n

rF F F nF

F F nF

−

+
= = =

+ + +

= − − +

= − + − + +

∑ ∑ ∑

Therefore

2 3
1

2
n

r n n
r
rF nF nF+ +

=

= − +∑ [2.5]

which is the formula (1) that appears in 
[2].  Now, taking m = 2 in (2.2) we can see 
that

( )
2 2 1

2 2 2 2
2

1 1 1 1 1

2 2
1 .

n n n
i i i

r r r n
r i r i r
r F r F r F n F

i i

−
− −

+
= = = = =

   
= − − +   

   
∑ ∑ ∑ ∑ ∑
that is

1 1
2 2

2
1 1 1 1 1

2 2 .
n n n n n

r r r n r r
r r r r r
r F rF rF n F F F

− −

+
= = = = =

= − − + + −∑ ∑ ∑ ∑ ∑
 [2.6]

Thus, using (2.4) and (2.5) in (2.6), after 
some algebraic manipulation, we obtain

( ) ( )2 2
2 3

1

2 2 3 8,
n

r n n
r
r F n F n F+ +

=

= + − − −∑
which is  the  formula  [17]  in  [2].   In  an 
analogous  way  we  can  recover  other 
known  identities  taking different  values  for 
m  in  [2.2].   Actually,  the  recurrence 
formula  [2.1] can  produce  a  lot  of 
identities,  simply choosing special values to 
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x and m.  For instance, the formula [2.1] 
for x = −1 is 

Taking m = 1 in [2.7] we obtain 

( ) ( ) ( ) ( ) ( )
1

1 2
1

1 1 1
1 1 1 1 1 .

n n n
r r r n n

r r r n n
r r r

rF F F n F F
−

+ +
+

= = =

 − = − + − − − + − ∑ ∑ ∑
[2.8]

Since that (see [2]) 

( ) ( )
1

1
2

1

1 1 1,
n

r n
r n

r
F F

−
−

−
=

− = − −∑ [2.9]

and using (2.9) in (2.8), we conclude that 

( ) ( ) ( ) ( ) ( )1 1 2
1 2 1

1

1 1 1 1 1 1 1 .
n

r n n n n
r n n n n

r
rF F F n F F− + +

− − +
=

 − = − − + − − − − + − ∑
 [2.10]

After some simplifications, (2.10) becomes

( ) ( ) ( ) ( ) 1
1 2

1
1 1 1 1 2.

n
r n n

r n n
r

rF n F F−
− −

=

− = − + + − −∑  [2.11] 

3. Proof of our main result

Before proving Theorem 2.1 we need to 
state some auxiliary results:

Theorem 3.1.  Let non-negative integers n 

≥ k be given.  Suppose that 1 − x − x
2 ≠  

0.  Then

1 1 2
1 1 1

1 2...
1

k k n n
k k n k k n n

k k n
F x F x F x F xF x F x F x

x x

+ + +
+ − +

+
+ − −+ + + =

− −

  [3.1]
 .

Proof.  Consider the sum

(3.2)

Multiplying (3.2) by -x and -x2
  

we obtain

-xS = -Fk x
k+1 – Fk+1+1 x

k+2
 
- Fk+2xk+3 - … 

- Fn-2xn-1 - Fn-1xn -  Fn xn+1. [3.3]

-x2S = -Fk xk+2 - Fk+1xk+3
 
- … - Fn-3 xn-1 - Fn-

2 xn - Fn-1 xn+1 -  Fn xn+2. [3.4]

Summing [3.2], [3.3] and [3.4], 
remembering the definition of Fibonacci 
sequence and cancelling terms we have
S - xS - x2S = Fk xk + Fk+1xk+1 - Fk x

k+1-  Fn 

xn+1- Fn-1 xn+1 -  Fn xn+2. [3.5]

Using again the definition of Fibonacci 
sequence  we conclude that

S - xS - x2S = Fk xk + Fk-1xk+1-  Fn+1 xn+1-  Fn  

xn+2.
that is, (3.1) holds.

Theorem 3.2.  Let x ∈  R,  1 − x − x2  ≠  0 
be given.  Then the following identity holds

( )( ) ( )
( )

1
12

1 1

1 2
1

2

1 1
1

                .
1

n n
mm r m r r

r r r
r r

m n n
n n

r F x r r F x F x
x x

n F x F x
x x

+
−

= =

+ +
+

= − − + −
− −

+
−

− −

∑ ∑

[3.6]

Proof.  Consider the sum

2 3
1 2 3

1
1 2 3 ... .

n
m r m m m n

r n
r
r F x F x F x F x n F x

=

= + + + +∑
It is easy to see that the sum above can 
be rearranged in the following way

( )
( ) ( )
( ) ( )

( ) ( )( ) ( )
( )( ) ( )

2 3
1 2 3

1

2 3
2 3

3
3

1
1

...

2 1 ...

3 2 ... ...

1 2

1 .

n
m r n

r n
r

m n
n

m m n
n

m m n n
n n

mm n
n

r F x F x F x F x F x

F x F x F x

F x F x

n n F x F x

n n F x

=

−
−

= + + + + +

+ − + + + +

+ − + + + +

+ − − − + +

+ − −

∑

By using the Lemma 3.1 we can write the 
last sum as

S = Fkxk + Fk+1xk+1
 
+ Fk+2xk+2+

 Fk+3xk+3+…+ F n-1 xn-1 +  Fnxn.

( ) ( ) ( )

( ) ( ) ( )

1

1 1 1

1
1 2

1
1 1

1 1 1

                   1 1 1 .

n m n
r i rm m i

r r
r i r

m n
r n nm i m

r m n
i r

m
r F r F

i
m

r F n F F
i

+ −

= = =

−
+ +−

+
= =

 
− = − − + 

 
   + − + − + −    

∑ ∑ ∑

∑ ∑
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( ) ( )

( )( ) ( )

1

1 2 1 2
1 0 1

2

2 3 1 2
2 1 1

2

1 1 2
1 1

2

2 1 ...

1

1

1

.
1

n
m r

r
r

m

mm

n n
n n

n n
n n

n n n n
n n n n

r F x

n n

F x F x F x F x
x x

F x F x F x F x
x x

F x F x F x F x
x x

=

+ +
+

+ +
+

+ + +
− +

= +

+ − + +

+ − −

+ − −
− −

+ − −
− −

+ − −
− −

∑

Therefore, the sum can be expressed  by

( )( ) ( )

( ) ( ) ( ) ( )( ) ( )( )
1

1
12

1

1 2
1

2

1 1
1

1 2 1 3 2 ... 1 2 1
1

n
m r

r
r

n
mm r r

r r
r

n n
m m mm m m mn n

r F x r r F x F x
x x

F x F x n n n n
x x

=

+
−

=

+ +
+

= − − + −
− −

 +  − + − + − + + − − − + − −   − − 

∑ ∑

After canceling  some terms we finally 
obtain

( )( ) ( )
( )

1

1
12

1

1 2
1

2

1 1
1

,
1

n
m r

r
r

n
mm r r

r r
r

m n n
n n

r F x r r F x F x
x x
n F x F x

x x

=

+
−

=

+ +
+

= − − + −
− −

+
−

− −

∑ ∑

which is the desired result.

Proof of Theorem 2.1.  By using a 
suitable change of variables we have

( )( ) ( )

( )( ) ( )( )
( )( ) ( )( )

( )

1
12

1

1
12 2

1 1
2 1

2 2
1 1

2
1

2 2
1 1 1

1 1
1

1 11 1
1 1

1 1 1
1 1

1 1
1 1

n
mm r r

r r
r

n n
m mm r m

r
r r

n n
m mm r m r

r r
r r

n m m
i m i r m i

r
r i i

r r F x F x
x x

r r F x F x
x x x x

xr r F x r r F x
x x x x

m mxr F x r
i ix x x x

θ
θθ θ

+
−

=

+
−

= =

−

= =

+ − −

= = =

− − +
− −

= − − + − −
− − − −

= − − + + −
− − − −

   
= − +   − − − −   

∑

∑ ∑

∑ ∑

∑ ∑ ∑

( )

1

1

2 1
1

2 2
1 1 1 1

1 1
1 1

n
r

r
r

m n m n
i m i r m i r

r r
i r i r

F x

m mxr F x r F x
i ix x x x

−

=

−
+ − −

= = = =

   
= − +   − − − −   

∑

∑ ∑ ∑ ∑

The theorem follows by the result above 
and the Lemma 3.2.

4. Power Series

In  this  section  we  state  a  result  which 
provides  an  algorithm to  compute  the 
sum  of [1.2]  without the  use of term-by-
term differentiation theorem.  This 

algorithm is a consequence  of the theorem 
below:

Theorem 4.1.  Let x ∈  (−1/φ, 1/φ) be 
given.  Then the following recurrence 
formula holds

( ) 1

2
1 1 1

2

2
1 1

1
1

1

.
1

m
im r m i r

r r
r i r

m
m i r

r
i r

m
r F x r F x

ix x

mx r F x
ix x

+ ∞ + ∞
+ −

= = =

+ ∞
−

= =

= − +
− −

 
  

 
+  − −  

∑ ∑ ∑

∑ ∑
[4.1]

Proof. Considering  the  Theorem  2.1,  it  is 
sufficient  to  take  n →  +∞ in  [2.1]  and 
to  remember  that lim 0m n

nx
n F x

→ + ∞
= , since the 

series (1.2) converges for all integer m and x 
∈ (−1/φ, 1/φ).

By theorem 4.1, we can obtain the following 
algorithm in order to provide the sum of 
(1.2): 

 (4.2)

This algorithm can be implemented in an 
efficient way, instead of the expensive 
process using the standar  derivative 
operator. It answers, for instance, the 
question proposed in the example 1.2:

50
74

1

6.526  10 .
3

n
n

n

r FS
+ ∞

=

= = ×∑

5. Final Remarks

In  this  article  we  state  a  new  recurrence 
formula  for  a  finite  sum  related  to 
Fibonacci  sequence.   This  formula recovers 
a lot of identities for Fibonacci sums. 
Besides  this, it implies an algorithm to 
compute  the sum of Fibonacci power series 
without the use of derivatives.  The scheme 
used to obtain this results can  be  extended 
to  others  series.  The  ideas  presented 
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2

2
1

2 2
1 1

( ,0) ,
1

1( , ) 1 ( , ) ( , ),
1 1

1,...,

j j
i

i i

xS x
x x

j jxS x j S x j i S x j i
i ix x x x

j m

+

= =





   
    

   




=
− −

= − − + −
− − − −

=

∑ ∑
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here  are  part  of a larger investigation 
which  has  been developed concerning the 
series

1
.m r
r

r
r x a

+ ∞

=
∑ [5.1]

in which {ar } is an arbitrary sequence.  In 
this article {ar } is the Fibonacci sequence. 
Nevertheless,  we  can extend our results for 
other sequence  types (see [6], [7]).  For 
example, if we take ar  = 1, (5.1) turns into 
the generalized geometric series

1
,m r

r
r x

+ ∞

=
∑ [5.2]

which converges  for all x ∈  (−1, 1).  Using 
the same ideas developed  in the last 
section, we can find out  a recurrence 
formula for such a series:

( ) 1

1 1 1

1 1 .
1

m
im r m i r

r i r

m
r x r x

ix

+ ∞ + ∞
+ −

= = =

 
= − −  

∑ ∑ ∑

There are other subjects still under 
investigation by which we search to extend 
the results hereby presented  for  other 
sequences  such  as,  Lucas’,  Generalized 
Fibonacci’s,  Generalized  Lucas’,  Pell’s, 
Tribonacci’s sequences,  etc.   It  should  be 
observed  that  in  [8],  the  author  studied 
a  series  related  to  (1.2),  covering Lucas’ 
and Fibonacci’s generalized sequences. 
However, their results are only valid for a 
positive rational  x.  Besides, the employed 
technique is quite different from ours.

Additional references  concerning Fibonacci 
numbers and the golden ratio can be 
found in [1].
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