

 22 (2008) 41-45

Dynamic control nodes in graphs

Ricardo Contreras1 and Julio Godoy1

1. DIICC, Universidad de Atacama, Copiapó, Chile
E-mail: rcontreras@diicc.uda.cl, jgodoy@diicc.uda.cl

__

Abstract

Coloring problem, in graph theory, is known to be NP-Hard for the chromatic number and NP-
Complete for the corresponding decision problem. However, for a clique, it is also known that the
chromatic number equals the size of that clique. We use this principle and propose a control
algorithm, based on a laminar structure, that performs a control over certain graphs families in
O(|V| + |E|) time. For an illustrating and corroborating purpose we based our study on a classical
chase problem.

Keywords: Ptolemaic graphs, control nodes, tree-covering, laminar structures, chordal graphs.

41

R. Contreras, J. Godoy 22 (2008) 41-45

1. Introduction

In this article we present an efficient time
algorithm for traffic controlling using as few
resources as possible. The idea is to cover
and control a certain area in a graph, and
once the covering has been done, keep on
controlling the covered area while moving
towards other areas using as few resources
as possible for this controlling. We based our
study in the popular classic board game
Scotland Yard. We changed the original
problem (in which Mr. X was forced to use
specific transportation systems and show his
presence after a certain number of turns)
letting the fugitive run as long as he isn’t
caught (i.e. same position, in the same time,
as a detective). We also gave him the
possibility to move as far as he wants at each
turn, and being invisible. This reformulation
will be called “Catch Problem”. We’ll start
with the formal definition of the Catch
Problem followed by a graphs analysis,
establishing for which graphs families it is
possible to obtain, in linear time, a new
problem representation structure (i.e. a tree)
for controlling. We’ll present our Catch
Problem control strategy based on a reduced
number of dynamic control nodes, and finally
we will analyze if an optimization is possible,
for the number of dynamic control nodes
needed.
the catch problem
Let G = (V, E) a connected graph
representing a map; A  V / |A| ≥ 1, a
subset with a certain number of agents
(control resources); and X  V / |X| = 1, a
subset for an unique element (i.e. Mr. X).
There are only two possible states: on the
run, Mr. X is still a fugitive, and catched, Mr.
X has been caught. Using the above subsets
we could represent this events as A ∩ X =

{∅} and A ∩ X  {∅} respectively.
We will consider the movements as changes
in the subsets’s elements. The changes will
be done alternately in a cycle, and only one
element is allowed to change at each cycle.
Since we consider changes in the subsets, for
each movement there will be two events:
before and after. For the subset A, this could
be represented as an initial event (A −{u 
A}), where we keep the node we eliminate

(u). Latter, for the second event (w  {V −
A} /w  u), we select a new node that hasn’t
been used. However, for the subset X there’s
a difference; its state could remain without
changes (i.e. Mr. X remained in the same
position) or could eventually change but, and
here we impose a critical rule, it changes if
and only if there is a path (a connected
subgraph) P G so that:  u  P , u ∩ A =

{∅} and  u/u  X  u  P . Despite the
action taken, the subset X will always be
defined by a) the graph’s topology and b) the
presence of nodes belonging to the subset A.
See figure 1 for an example.
The cardinality of each path P is bounded by

A, therefore P ∩ A = {∅} and the cardinality
of P (i.e. the longest path) could be at most |
V | − | A |. According to this, the cardinality
of A should be | V | −1 so that in the next

state of A, A ∩ X  {∅} (i.e. Mr. X gets
caught). However, in terms of the size of
subset A, it doesn’t represent an efficient way
to solve the problem. In order to solve this
problem we focused on an efficient use of the
agents subset A, specifically its cardinality
and its settings in G, for the delimitation of P
paths and therefore, X.

Suitable graphs familias

For the catch problem we could generalize
and state that there are two possible extreme
configurations (depending on the graph
topology): a chain and a clique (Kn). For the
first case, a simple agent situated at an
extreme could perform a control of G moving
towards the other extreme (despite the
position of Mr. X, he will eventually be
found), see figure 2.a. For the second case,
however, the amount of agents needed is in
direct relation with the size of the clique (i.e.
k − 1), see figure 2.b. A third case would
consider all graphs G that are neither a chain
nor a clique (e.g. a cycle Cn with n ≥ 4).
Our proposal takes into consideration only
the first two cases and their combination.
Therefore, as an obvious starting point, we
will focus on the chordal graphs [2]. Now,
since the clique still represents our worst
scenario in resources allocation, we need a
structure that allows us to control each of the

42

R. Contreras, J. Godoy 22 (2008) 41-45

cliques (one at a time) and, once this control
over a clique has been done, to “free” the
resources used for controlling (i.e. the
dynamic control nodes)

Figure 1: Graph G = (V, E) A = { a, b, n,
m, j, g, o, l }, X = { p }, two possible
P paths {i, p, k}, {f, e} however, only the
first alternative is a valid one

The structure selected for this control is a
Tree-covering structure; it allows us to
perform a control over G from one starting
point, like the DFS [4]. It is important to
precise that the Tree-covering structure
needs to have a particular configuration
which is that all v  Kn are consecutive in
the tree (despite their order, all nodes
belonging to a clique should be represented
as a chain in the tree), we will call this
structure T. It is also important to precise
that not all chordal graphs have a T
structure. See figure 2.c for an example.
We need a structure T that allows us to
represent the two extreme configurations,
considering at the same time all those
subsets of chordal graphs that have a T
representation (e.g. a chain of cliques), in a
linear time. We know that ptolemaic graphs
[7] could represent some of the chordal
graphs that have a T structure and also the
two extreme cases (see figure 3).
We know that, for ptolemaic graphs, their
recognition is linear [5]; even more, we know
that it is possible to obtain a T structure also
in linear time, based on the laminar principle
[7]. Therefore, because of the complexity in
obtaining the T structure, our problem will be
focused, from this point forward, on the
ptolemaic family and their equivalent classes
([1], [3], [6]).
Dynamic control nodes for ptolemaic graphs
For an optimal use of resources (i.e. agents)
we will use the structure defined by T; for

nodes covering, the following operations will
be used: Pred(T ,v), that refers to the father
of v in T and Suc(T ,v) that refers to the
immediate predecessor of v in T [7]. The idea
is to use these operations to control each
clique at a time (this is the principle of the
dynamic control nodes).

Figure 2: a) a chain where controlling the
node e allows us to perform a control moving
towards a. b) a clique K5 where four nodes
are needed to find Mr. X in the following
move. c) a chordal graph where no T
representation is possible so that all cliques
are a chain

Figure 3: a) a ptolemaic graph that has a T
structure such that every maximal clique is a
chain. b) a chordal graph that has a T
structure such that every maximal clique is a
chain but that is not ptolemaic

A problem will arise when a node belongs to
more than one clique, because we will have
to control the clique and, once the control
has been done, keep on controlling the
intersection(s). Since we defined that the
subset X could change its state to a node u if
and only if there is a path P ( u  P, u ∩ A

= {∅} and  u/u  X  u  P); once that a
P has been completely checked, we could
free the control nodes in the intersection,

43

R. Contreras, J. Godoy 22 (2008) 41-45

therefore reducing the size of subset A. See
figure 4.a for an example.

Figure 4: a) A ptolemaic graph G and its T
structure where c, f and g are the cliques
intersections. b) Another T representation of
the original graph G with clique labels for
each node

Finally the intersection of maximal cliques
(found while obtaining T) could be used to
label each node according to its clique using
the algorithm described in [7] (it is important
to note that a node always belongs to at least
one clique). See figure 4.b for an example.

2. Algorithm

For the following algorithm we will use a
structure called label(u) (obtained in linear
time from [7]) that includes, for each u  A,
the maximal cliques to which u belongs (e.g.
a node u could have a label referring to a
clique K1 and another label to K7). Note that
a node belonging to X (i.e. Mr. X) could be
changed only if there is a path P such that P

∩ A = { ∅ } (i.e. Agents not in the way).

1. Data: Laminar tree with labels T
2. Result n  X

3. found  0, A  {∅}, j0;
4. arrayleafs  leafs from V /* Obtaining the
leafs and labels*/
5. repeat
6. flag 1;
7. /*Process a leaf and considers cliques
chain */
8. if arrayleafs[j] Not Empty then u 
arrayleafs[j];
9. else obtain new arrayleafs[j] /*new leafs
are needed (apply DFS)*/
10. end_if
11. ki label(u); /*Assign Ki the label
corresponding to u */

12. while ki  label(u) and found = 0 and
flag = 1 do
13. A  A  {u};/*Assign agents to nodes
associated with ki*/

14. if A ∩ X  {∅} then found 1 /* Mr.
X has been found */
15. else label(u) label(u) – ki;
16. end_if

17. if Pred(T,u)  {∅} then u  Pred(T,u)
18. else flag  0;
19. end if
20. end_while

21. while Suc(T,u)  {∅} and found = 0 do
22. aux  u;
23. label(u)  label(u) –{ki};
24. if ki  label(Suc(T,u)) then u 
Suc(T,u) /* This ensures only 25. one route
*/
26. end_if

27. if label(aux) = {∅} then
Suc(T,Pred(T,aux))  Suc(T,aux);
28. Pred(T, Suc(T,aux))  Pred (T,aux);
29. /*Eliminates all nodes belonging to
only one clique */
30. A  A – aux;
31. end_if
32. end_while
33. A  A-u;

34. Suc(T, Pred (T,u)) {∅}; /*Eliminates
the last node*/
35. j  j+1;
36.until found = 1;

Algorithm 1. Dynamic control nodes
algorithm

For demonstrative purpose let’s consider the
graph in figure 4.a and the corresponding T
structure (figure 4.b with the clique labels for
each node). We will assume Mr. X is at node
c. We will start from the leaf node i, obtain
the label (only one label at this node) and
perform a control node by node assigning
resources (i.e. Agents) to the predecessors of
i while the label, in each subsequent
predecessor, equals the one obtained at the
leaf. Once nodes g and f, the only ones with
a double labeling, are controlled, Mr. X will
not be able to reach h or i but will be able to
change its position to d, e, a, b or remain in c
(A = {i, h, g, f } reduces to A = {f, g}).
Considering the leaf node e we will repeat the

44

R. Contreras, J. Godoy 22 (2008) 41-45

process and end up with a single node in
control, c. Because of their labeling, e, d, c, g
and f will be controlled and since c is the only
one with a different label, it will remain (A =
{e, d, c, g, f } obtained at this stage, is
reduced to A = {c}). Assuming that Mr. X is
still on the run (i.e. a or b), he will be
catched in the last cycle.

2.1 Complexity

Since the structures used to represent the
original graph as T are obtained in linear time
[7], we’ll focus on the algorithm’s complexity.
The main problem is on line 4, that is, the
leafs identification. For this, we create an
array (arrayleafs) that contains all the leafs
present in T so that on each cycle, a different
leaf is used. This process will be done using
the DFS algorithm, so that each time a node
has a Suc(T ,u) = {0} it will be included in
the array arrayleafs. The complexity of this
step is O (|V| + |E|). Finally, the complexity
of the algorithm is O (n + k′), where n
represents the nodes of G and k′ the sum of
the cardinalities of all nodes belonging to
more than one clique.

3. Conclusion

The dynamic control nodes algorithm works
for ptolemaic graphs and their equivalent
classes; however we have shown that it is
possible to have a T structure and therefore
to apply the algorithm for certain chordal
graphs that do not necessarily belong to
these graphs classes.
Because of the bases considered for the
study, it is not possible to apply the
algorithm neither to all chordal graphs or
non-chordal graphs, however this does not
implies that it can’t be done. As further work,
we plan to treat some different classes.
Despite the topology of the T structure, our
algorithm will always use the minimal

amount of control nodes due to the fact that
we study the structure from a bottom-up
approach (i.e. contrary to the DFS approach),
ensuring at each cycle at least a partial clique
node control. Therefore an optimization for
the amount of dynamic control nodes is not
necessary. Finally, because of the
correspondence with ptolemaic graphs, this
algorithm is suitable for some acyclic
hypergraphs, in particular the γ − acyclic
ones.

4. References

[1] Chartrand, G. and Kay, D.C. 1965. A
characterization of certain Ptolemaic graphs.
In Canada Journal of Mathematics, Vol. 17,
No. 2, pp 342 – 346.

[2] Golumbic, M.C. 2004. Algorithmic graph
theory and perfect graphs, North-Holland
Publishing Co., Amsterdam, The Netherlands.

[3] Howorka, Edward. 1981. A
characterization of Ptolemaic graphs. In
Journal of Graph Theory. Vol 5, pp 323-331.

[4] Knut, Donald. 1997. The Art of Computer
Programming. Addison-Wesley, Boston, USA.

[5] Maffray, F. and Hammer, P.L. 1990.
Completely separable graphs. In Discrete
Applied Mathematics. Vol. 27, No. 1-2, pp
85-99.

[6] Mulder, H.M. and Bandelt, H.J.. 1986.
Distance-hereditary graphs. In Journal of
Combinatorial Theory Series B, Vol. 41, No.
2, pp 182-208.

[7] Uehara, Ryuyhei and Uno, Yushi. Laminar
structure of ptolemaic grapas and its
application. In Lecture Notes in Computer
Science. Vol 3827, pp 186-195.

45

