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Abstract 
 
Coloring problem, in graph theory, is known to be NP-Hard for the chromatic number and NP-
Complete for the corresponding decision problem. However, for a clique, it is also known that the 
chromatic number equals the size of that clique. We use this principle and propose a control 
algorithm, based on a laminar structure, that performs a control over certain graphs families in 
O(|V| + |E|) time. For an illustrating and corroborating purpose we based our study on a classical 
chase problem. 
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1. Introduction 
 
In this article we present an efficient time 
algorithm for traffic controlling using as few 
resources as possible. The idea is to cover 
and control a certain area in a graph, and 
once the covering has been done, keep on 
controlling the covered area while moving 
towards other areas using as few resources 
as possible for this controlling. We based our 
study in the popular classic board game 
Scotland Yard. We changed the original 
problem (in which Mr. X was forced to use 
specific transportation systems and show his 
presence after a certain number of turns) 
letting the fugitive run as long as he isn’t 
caught (i.e. same position, in the same time, 
as a detective). We also gave him the 
possibility to move as far as he wants at each 
turn, and being invisible. This reformulation 
will be called “Catch Problem”. We’ll start 
with the formal definition of the Catch 
Problem followed by a graphs analysis, 
establishing for which graphs families it is 
possible to obtain, in linear time, a new 
problem representation structure (i.e. a tree) 
for controlling. We’ll present our Catch 
Problem control strategy based on a reduced 
number of dynamic control nodes, and finally 
we will analyze if an optimization is possible, 
for the number of dynamic control nodes 
needed. 
the catch problem 
Let G = (V, E) a connected graph 
representing a map; A   V / |A| ≥ 1, a 
subset with a certain number of agents 
(control resources); and X   V / |X| = 1, a 
subset for an unique element (i.e. Mr. X ). 
There are only two possible states: on the 
run, Mr. X is still a fugitive, and catched, Mr. 
X has been caught. Using the above subsets 
we could represent this events as A ∩ X = 

{∅} and A ∩ X   {∅} respectively. 
We will consider the movements as changes 
in the subsets’s elements. The changes will 
be done alternately in a cycle, and only one 
element is allowed to change at each cycle. 
Since we consider changes in the subsets, for 
each movement there will be two events: 
before and after. For the subset A, this could 
be represented as an initial event (A −{u  
A}), where we keep the node we eliminate 

(u). Latter, for the second event (w  {V − 
A} /w   u), we select a new node that hasn’t 
been used. However, for the subset X there’s 
a difference; its state could remain without 
changes (i.e. Mr. X remained in the same 
position) or could eventually change but, and 
here we impose a critical rule, it changes if 
and only if there is a path (a connected 
subgraph) P G so that:  u  P , u ∩ A = 

{∅} and   u/u  X   u  P . Despite the 
action taken, the subset X will always be 
defined by a) the graph’s topology and b) the 
presence of nodes belonging to the subset A. 
See figure 1 for an example. 
The cardinality of each path P is bounded by 

A, therefore P ∩ A = {∅} and the cardinality 
of P (i.e. the longest path) could be at most | 
V | − | A |. According to this, the cardinality 
of A should be | V | −1 so that in the next 

state of A, A ∩ X   {∅} (i.e. Mr. X gets 
caught). However, in terms of the size of 
subset A, it doesn’t represent an efficient way 
to solve the problem. In order to solve this 
problem we focused on an efficient use of the 
agents subset A, specifically its cardinality 
and its settings in G, for the delimitation of P 
paths and therefore, X. 
 
Suitable graphs familias 
 
For the catch problem we could generalize 
and state that there are two possible extreme 
configurations (depending on the graph 
topology): a chain and a clique (Kn). For the 
first case, a simple agent situated at an 
extreme could perform a control of G moving 
towards the other extreme (despite the 
position of Mr. X, he will eventually be 
found), see figure 2.a. For the second case, 
however, the amount of agents needed is in 
direct relation with the size of the clique (i.e. 
k − 1), see figure 2.b. A third case would 
consider all graphs G that are neither a chain 
nor a clique (e.g. a cycle Cn with n ≥ 4). 
Our proposal takes into consideration only 
the first two cases and their combination. 
Therefore, as an obvious starting point, we 
will focus on the chordal graphs [2]. Now, 
since the clique still represents our worst 
scenario in resources allocation, we need a 
structure that allows us to control each of the 
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cliques (one at a time) and, once this control 
over a clique has been done, to “free” the 
resources used for controlling (i.e. the 
dynamic control nodes) 
 

 
Figure 1: Graph G = (V, E ) A = { a, b, n, 
m, j, g, o, l }, X = { p }, two possible                                                                    
P paths {i, p, k}, {f, e} however, only the 
first alternative is a valid one 
 
The structure selected for this control is a 
Tree-covering structure; it allows us to 
perform a control over G from one starting 
point, like the DFS [4]. It is important to 
precise that the Tree-covering structure 
needs to have a particular configuration 
which is that all v  Kn are consecutive in 
the tree (despite their order, all nodes 
belonging to a clique should be represented 
as a chain in the tree), we will call this 
structure T. It is also important to precise 
that not all chordal graphs have a T 
structure. See figure 2.c for an example. 
We need a structure T that allows us to 
represent the two extreme configurations, 
considering at the same time all those 
subsets of chordal graphs that have a T 
representation (e.g. a chain of cliques), in a 
linear time. We know that ptolemaic graphs 
[7] could represent some of the chordal 
graphs that have a T structure and also the 
two extreme cases (see figure 3). 
We know that, for ptolemaic graphs, their 
recognition is linear [5]; even more, we know 
that it is possible to obtain a T structure also 
in linear time, based on the laminar principle 
[7]. Therefore, because of the complexity in 
obtaining the T structure, our problem will be 
focused, from this point forward, on the 
ptolemaic family and their equivalent classes 
([1], [3], [6]). 
Dynamic control nodes for ptolemaic graphs  
For an optimal use of resources (i.e. agents) 
we will use the structure defined by T; for 

nodes covering, the following operations will 
be used: Pred(T ,v), that refers to the father 
of v in T and Suc(T ,v) that refers to the 
immediate predecessor of v in T [7]. The idea 
is to use these operations to control each 
clique at a time (this is the principle of the 
dynamic control nodes). 
 

 
 
Figure 2: a) a chain where controlling the 
node e allows us to perform a control moving 
towards a. b) a clique K5 where four nodes 
are needed to find Mr. X in the following 
move. c) a chordal graph where no T 
representation is possible so that all cliques 
are a chain 
 

 
 
Figure 3:  a) a ptolemaic graph that has a T 
structure such that every maximal clique is a 
chain. b) a chordal graph that has a T 
structure such that every maximal clique is a 
chain but that is not ptolemaic 
 
A problem will arise when a node belongs to 
more than one clique, because we will have 
to control the clique and, once the control 
has been done, keep on controlling the 
intersection(s). Since we defined that the 
subset X could change its state to a node u if 
and only if there is a path P (  u  P, u ∩ A 

= {∅} and   u/u  X   u  P); once that a 
P has been completely checked, we could 
free the control nodes in the intersection, 
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therefore reducing the size of subset A. See 
figure 4.a for an example. 
 

 
Figure 4: a) A ptolemaic graph G and its T 
structure where c, f and g are the cliques 
intersections. b) Another T representation of 
the original graph G with clique labels for 
each node 
 
Finally the intersection of maximal cliques 
(found while obtaining T) could be used to 
label each node according to its clique using 
the algorithm described in [7] (it is important 
to note that a node always belongs to at least 
one clique). See figure 4.b for an example. 
 
2. Algorithm  
 
For the following algorithm we will use a 
structure called label(u) (obtained in linear 
time from [7]) that includes, for each u  A, 
the maximal cliques to which u belongs (e.g. 
a node u could have a label referring to a 
clique K1 and another label to K7). Note that 
a node belonging to X (i.e. Mr. X) could be 
changed only if there is a path P such that P 

∩ A = { ∅ } (i.e. Agents not in the way). 
 
1. Data: Laminar tree with labels T 
2. Result n   X 

3. found  0, A  {∅}, j0; 
4. arrayleafs  leafs from V /* Obtaining the 
leafs and labels*/ 
5. repeat 
6.   flag 1; 
7.   /*Process a leaf and considers cliques 
chain */ 
8.   if arrayleafs[j] Not Empty then u  
arrayleafs[j]; 
9.   else obtain new arrayleafs[j] /*new leafs 
are needed (apply DFS)*/ 
10.  end_if 
11.  ki label(u); /*Assign Ki the label 
corresponding to u */ 

12.  while ki   label(u) and found = 0 and 
flag = 1 do 
13.   A  A   {u};/*Assign agents to nodes 
associated with ki*/ 

14. if A ∩ X   {∅} then found 1 /* Mr. 
X has been found */ 
15. else label(u) label(u) – ki; 
16. end_if  

17. if Pred(T,u)  {∅} then u  Pred(T,u) 
18. else flag  0; 
19. end if 
20.  end_while 

21.  while Suc(T,u)  {∅} and found = 0 do 
22.  aux  u; 
23. label(u)  label(u) –{ki}; 
24. if ki  label(Suc(T,u)) then u  
Suc(T,u) /* This ensures only 25. one route 
*/ 
26. end_if 

27. if label(aux) = {∅} then 
Suc(T,Pred(T,aux))  Suc(T,aux); 
28.    Pred(T, Suc(T,aux))  Pred (T,aux); 
29.      /*Eliminates all nodes belonging to 
only one clique */ 
30.         A  A – aux;  
31. end_if 
32.  end_while 
33.  A  A-u; 

34.  Suc(T, Pred (T,u)) {∅}; /*Eliminates 
the last node*/ 
35.  j  j+1; 
36.until found = 1; 
 
Algorithm 1. Dynamic control nodes 
algorithm 
 
For demonstrative purpose let’s consider the 
graph in figure 4.a and the corresponding T 
structure (figure 4.b with the clique labels for 
each node). We will assume Mr. X is at node 
c. We will start from the leaf node i, obtain 
the label (only one label at this node) and 
perform a control node by node assigning 
resources (i.e. Agents) to the predecessors of 
i while the label, in each subsequent 
predecessor, equals the one obtained at the 
leaf. Once nodes g and f, the only ones with 
a double labeling, are controlled, Mr. X will 
not be able to reach h or i but will be able to 
change its position to d, e, a, b or remain in c 
(A = {i, h, g, f } reduces to A = {f, g}). 
Considering the leaf node e we will repeat the 
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process and end up with a single node in 
control, c. Because of their labeling, e, d, c, g 
and f will be controlled and since c is the only 
one with a different label, it will remain (A = 
{e, d, c, g, f } obtained at this stage, is 
reduced to A = {c}). Assuming that Mr. X is 
still on the run (i.e. a or b), he will be 
catched in the last cycle. 
 
2.1 Complexity 
 
Since the structures used to represent the 
original graph as T are obtained in linear time 
[7], we’ll focus on the algorithm’s complexity. 
The main problem is on line 4, that is, the 
leafs identification. For this, we create an 
array (arrayleafs) that contains all the leafs 
present in T so that on each cycle, a different 
leaf is used. This process will be done using 
the DFS algorithm, so that each time a node 
has a Suc(T ,u) = {0} it will be included in 
the array arrayleafs. The complexity of this 
step is O (|V| + |E|). Finally, the complexity 
of the algorithm is O (n + k′), where n 
represents the nodes of G and k′ the sum of 
the cardinalities of all nodes belonging to 
more than one clique. 
 
3. Conclusion 
 
The dynamic control nodes algorithm works 
for ptolemaic graphs and their equivalent 
classes; however we have shown that it is 
possible to have a T structure and therefore 
to apply the algorithm for certain chordal 
graphs that do not necessarily belong to 
these graphs classes. 
Because of the bases considered for the 
study, it is not possible to apply the 
algorithm neither to all chordal graphs or 
non-chordal graphs, however this does not 
implies that it can’t be done. As further work, 
we plan to treat some different classes. 
Despite the topology of the T structure, our 
algorithm will always use the minimal 

amount of control nodes due to the fact that 
we study the structure from a bottom-up 
approach (i.e. contrary to the DFS approach), 
ensuring at each cycle at least a partial clique 
node control. Therefore an optimization for 
the amount of dynamic control nodes is not 
necessary. Finally, because of the 
correspondence with ptolemaic graphs, this 
algorithm is suitable for some acyclic 
hypergraphs, in particular the γ − acyclic 
ones. 
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