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ABSTRACT

Fused Deposition Modeling (FDM) has emerged as an additive manufacturing technology
(AM) capable of creating parts with low production volume and high added value. One
challenge observed in the FDM-AM process is to find the process parameters to each material
that guarantee the repeatability and reproducibility in parts. This paper presents a data-
driven predictive approach that estimates the mechanical properties of parts from the process
parameters. A dataset with 50 experiments was used to train two models. These models
have seven input parameters and one output parameter for each model. An exploratory data
analysis was performed to understand the relation between the process parameters and the
mechanical properties. Then Multilayer Perceptron (MLP) algorithm was used to estimate
the roughness and tensile strength. The network architectures have four layers. The first
layer has 20 neurons; the second layer has 25 neurons, and the third and fourth layers with
60 neurons, respectively. Root Mean Squared Error (RMSE) and coefficient of determination
R2 score were used to evaluate the model precision. A comparison between the roughness
and tensile strength allows observing that the roughness model obtained reliability for future
forecasts with an R2 of 0.98 and a better fit with an RMSE = 1.73, in opposition to the
Tensile strength obtained an RMSE of 2.69. and an R2 = 0.96

Keywords: Additive Manufacturing, Fused Deposition Modeling, Multilayer Perceptron,
Roughness, Tensile Strength
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1 Introduction

1.1 Additive Manufacturing

Additive Manufacturing (AM) has experienced
different transformations to consolidate itself as
one of the pillars that support the new concept of
industry 4.0 [1]. One of the most popular tech-
niques of AM is the Fused Deposition Modeling
process (FDM), also known as Fused Filament
Fabrication, Fused Layer Modeling, or Material
Extrusion. This technique consists of depositing
a filament from a nozzle at a high temperature
while the nozzle system is moving. The material
leaves the nozzle in a molten form, and due to the
movement of the deposition system, it adheres to a
printing heat bed. This process allows the creation
of 3D models with a range of materials: metallic
[2], ceramic [3], composite [4], and polymeric [5].

To create a part using the FDM process is
necessary to follow a series of steps that start
from preprocessing through production and post-
processing [6]. In the pre-processing, the 3D part
is used in the stereo-lithography format. When
a new material is used, the process parameters
must be adjusted considering the machine’s capac-
ity, the filament manufacturer’s recommendations,
and the worker’s experience. A 3D printing slicing
software is used to adjust the process parameters.
Then the software transfers an STL file to a series
of layers representing the machine path in G-code
format [6].

Process parameters can be categorized into three
groups: Temperature conditions: Nozzle tempera-
ture, bed heat temperature, and environment tem-
perature; Building orientation: The main orien-
tations are vertical, horizontal, or lateral. How-
ever, orientations can be modified based on the
user experience. Slicing parameters: Nozzle diam-
eter, layer thickness, deposition speed, flow rate,
infill, raster orientation, raster pattern, air gaps,
top thickness, bottom thickness, and number of
contours [7].

1.2 Current State of the Knowledge

Data-driven approaches applied in the AM pro-
cess have received attention in recent years due
to their ability to offer accurate results from pre-
viously performed datasets. This approach allows
us to improve the quality of parts obtained by this
process. A source of information about this issue

is explored in this paper.

Baturynska, (2018) developed a statistical study
to measure the dimensional accuracy in addi-
tive manufacturing of the parameters of thickness,
length, and width, based on linear regression, con-
sidering the properties of the model in STL format
[8]. The mentioned work highlighted the impact of
the number of mesh triangles on width and thick-
ness (XZY orientation), length (in ZYX), and an-
gle orientation. Baumann et al. (2018) analyzed
the trends of the Machine Learning approach ap-
plied in the AM process, proposing five groups to
improve the part quality in this process: process
parameters, quality improvement, process moni-
toring and control, digital security, and additive
manufacturing [9]. Also, emphasize using Arti-
ficial Neural Networks, genetic algorithms, and
Support Vector Machine applied to AM. These as-
pects show an increment in the use of deep neu-
ral networks for component analysis and Particle
Swarm Optimization.

Li et al. (2019) estimated the roughness surface
in the FDM process using an ensemble of ma-
chine learning algorithms [10]. Features in time
and frequency were extracted from two thermo-
couples and two accelerometers installed into the
plate and the extruder system. They compared
the accuracy between the ensemble model and in-
dividual algorithms obtaining a better accuracy of
the model ensemble in terms of Root mean square
error (RMSE) and relative error metrics.

Recently a comparative analysis between MLP
and Convolutional Neural Networks (CNN) for
predicting the scaling ratio for each part from the
EOS P395 polymer-powder bed fusion was per-
formed [11]. The mean square error (MSE) was
used as a metric to compare the accuracy of each
model. MLP outperformed the CNN and helped
to reduce the dimensional precision. However,
they highlighted the possibility of obtaining a bet-
ter result using CNN if more experiments were
performed.

A data drive predictive model to estimate the
tensile strength using PLA as the printing ma-
terial was developed [12]. Extruder tempera-
ture (ºC), printing speed (mm/s) and layer height
(mm), were considered as the input parameters.
One thermocouple and accelerometer were in-
stalled into the heat bed and included in the input
dataset. Metrics obtained from the R2 allowed ob-
serving that the Long Short-Term Memory model
has outperformed the random forest and support-
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ing vector machine, with the respective improve-
ment being 9.8% and 24.3%. They confirmed the
effectiveness of the sequential layer by layer of the
FDM process using the Long-Short Term Memory
network.
Although artificial intelligence approaches have
stood out as an alternative that offers precision
for linear and non-linear problems, the use of these
approaches for ABS and PLA has not been devel-
oped before, as well as the use of parameters such
as infill pattern and bed head. These parameters
have significant importance in the quality of the
part.
This paper presents a novel deep learning ap-
proach to predicting the surface roughness and
tensile strength of parts from the FDM process.
The remainder of the paper is organized as fol-
lows: Section 2 provides the materials and meth-
ods describing the dataset characterization, Pear-
son correlation, and the MLP algorithm, including
the network architecture and the evaluation met-
rics. Section 3 presents the results and discussions,
and section 4 provides conclusions.

2 Materials and Methods

The whole methodology of this study covers five
main steps.

• Dataset characterization

• Pearson Correlation

• Multilayer perceptron

• Network Architecture

• Metrics Evaluation

2.1 Dataset Characterization

The dataset used in this study was made avail-
able by the Department of Mechanical Engineering
at the University of Selcuk [13]. In this dataset,
fifty experiments were analyzed. Nine process pa-
rameters were considered input parameters: Layer
Height (mm), Wall Thickness (mm), Infill Den-
sity (%), Infill Pattern (honeycomb and raster),
Nozzle Temperature (°C), Bed Temperature (°C),
Print Speed (mm/s), Material (ABS and PLA),
Fan Speed (%), and two outputs: Roughness and
Tensile Strength.

The Nozzle temperature range used in this re-
search for ABS is from 220 °C to 250 °C and PLA
from 200 °C to 220 °C. The heat bed temperature
for the ABS is between 60 °C and 80 °C. In addi-
tion, for PLA, between 60 °C and 90 °C. The basic
statistics of the process parameters are. described
in Table 1. The infill pattern and the material
type were defined as discrete values. To the ma-
terial type ABS = 1 and PLA = 0, and to infill
pattern, honeycomb =1 and grid = 0.

2.2 Pearson Correlation

The Pearson correlation was calculated to under-
stand the linear correlation between the input pa-
rameters and outputs. This metric allows us to
observe if two study variables are proportional di-
rectly (positive values) or if these variables are
proportional inversely (negative values). As well if
the correlation is small (values between ±0.1 and
±0.3), medium (values between ±0.3 and ±0.5),
or large (between ±0.5 and ±1). This equation is
given for Eq. 1.

r =

n∑
i=1

(x− x̄)(y − ȳ)√
n∑

i=1

(x− x̄)2

√
n∑

i=1

(y − ȳ)2

(1)

In which x and y are variables samples, x̄ is the
mean of the values in x and ȳ is the mean of the
values in y.

2.3 Multilayer Perceptron (MLP)

An MLP can be defined as an algorithm able to
learn and define complex nonlinear relationships
between inputs and outputs [14]. This algorithm
is composed of one input layer, one or more hidden
layers, and one output layer, in which the outputs
of every neuron are connected with the neuron in-
puts of the next layer. Consequently, the input
signal propagates through the network. Rectified
Linear Unit (ReLU) activation function is applied
in all hidden layers except the last layer.

2.4 Network Architecture

MLP was used to estimate the roughness and ten-
sile strength of two different models with the same
architecture. The architecture used in these mod-
els has four layers: the first is composed of 20
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Table 1: Basic statistics of process parameters and output variables.

Layer Height Wall Thickness Nozzle Temp Bed Temp Fan Speed Roughness Tensile Strength
Mean 0.11 5.22 221.50 70.00 50.00 170.58 20.08
Std 0.06 2.92 14.82 7.14 35.71 99.03 8.93
Min 0.02 1.00 200.00 60.00 0.00 21.00 4.00
25% 0.06 3.00 210.00 65.00 25.00 92.00 12.00
50% 0.10 5.00 220.00 70.00 50.00 165.50 19.00
75% 0.15 7.00 230.00 75.00 75.00 239.25 27.00
Max 0.20 10.00 250.00 80.00 100.00 368.00 37.00

neurons, the second layer of 25, and the third and
fourth layers of 60, respectively. It was consid-
ered 70% of the dataset for training and 30% for
evaluation.
In the loss function used is the Mean Square Error,
shown in Eq. 2. N represents the sample size, and
the elements inside the parentheses represent the
square of the difference between actual (yi) and
predicted values (ŷi)

MSE =
1

n

N∑
i=1

(yi − ŷi)
2 (2)

This loss function value allows us to obtain posi-
tive values due to always squaring the errors. A
Random state was used as a hyperparameter to
control the randomness involved in the model.

2.5 Metric Evaluations

Evaluate the accuracy of predicted values obtained
by the deep learning model in this study are dis-
cussed in terms of two metrics, Root Mean Square
Error (RMSE) Eq.3, and the coefficient of deter-
mination, R2 Eq. 4.

RMSE =

√√√√ 1

n

N∑
i=1

(yi − ŷi)2 (3)

RMSE can be defined as the standard deviation
of the residuals indicating the average model pre-
diction error. RMSE is given for absolute values,
and when its value is lower, it means a better fit
for the model.

R2 = 1−

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi − ȳ)2
(4)

In which ȳ is given for Eq. 5.

ȳ =
1

n

n∑
i=1

yi (5)

The coefficient of determination is a measured
value that indicates the spread between the actual
and predicted values and is given in perceptual val-
ues. A Higher R2 coefficient suggests a better fit
for the model.

3 Results and Discussions

The Pearson correlation of the input parameters
and tensile strength and roughness were calcu-
lated. Roughness showed a large proportional
directly with the layer height. Other aspects,
such as layer height, wall thickness, and infill pat-
tern, showed a medium correlation with the ten-
sile strength. The nozzle temperature showed a
proportional inversely correlation with the tensile
strength; depending on the material, when the
nozzle temperature increases, the tensile strength
decreases due to the solidification occurring during
the process. The correlation observed with the in-
fill density, and print speed with the output values
presented a low correlation.

For this reason, it was excluded from the model.
This decision allowed improve the performance.
of the model. The results of this correlation are
shown in Table 2.

The deep learning model was trained with 500
epochs. The loss function MSE of 100 in 100
epochs is shown in Table 3. The performance
metrics were calculated and presented in Table 3,
showing a decrease in the loss function value for
each output. The tensile strength showed a co-
efficient of determination R2 of 0.96, showing a
reliable model for future forecasts. The RMSE to
the tensile strength model was 2.96, which means
the model can fit with the dataset.

The Roughness showed a coefficient of determi-
nation of 0.98, showing a reliable model for fu-
ture forecasts and better fit concerning the tensile
strength model (0.96). The RMSE to roughness
showed a better performance (1.73) when com-
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Figure 1: Network Architecture of four layers. To hidden layers was used The RELU activation
function.

Table 2: Pearson correlation between input and outputs parameters.
Layer height Nozzle Temp. Wall Thickness Infill Pattern Bed temp. Material Fan Speed Infill Density Print Speed

Tensile Strength 0.34 -0.41 0.4 0.36 -0.25 -0.30 -0.25 0.01 0.27

Roughness 0.80 0.35 -0.23 0.12 0.19 -0.40 0.19 0.05 0.12

Table 3: Loss Function to tensile strength and roughness of 100 in 100 epochs.

Tensile Strength Roughness

Epoch Loss Loss Val Loss Loss Val

1 368.12 305.22 42339.35 43009.9
100 2.43 0.50 21.43 15.51
200 0.70 1.81 2.84 4.54
300 0.42 1.67 1.81 3.51
400 0.27 1.48 1.25 2.35
500 0.19 1.27 0.85 1.52

pared with the tensile strength (2.69). However,
both indicators showed a good fit [15].

4 Conclusions

AM processes are highly interested in guarantee-
ing the repeatability and reproducibility of parts.
The process parameters, the work material, and
the environment control are important aspects of
reducing the differences between printed parts.
Adjusting the process parameters when new ma-
terial is used is a priority to increasing the quality
of components in terms of roughness and tensile
strength.
This paper studied a dataset provided by the De-
partment of Mechanical Engineering at the Uni-

versity of Selcuk. Fifty experiments were ana-
lyzed from a basic statistics approach. Then this
dataset was used to train an Artificial Neural Net-
work (ANN) based on the Multilayer perceptron
algorithm. This approach creates a mechanism to
estimate the roughness and tensile strength from
process parameters provided by the dataset. One
of the limitations found during this approach was
using a dataset with a low number of experiments.
This fact directly affects the model performance
and evaluation metrics. On the other hand, using
two materials in the dataset with different pro-
cess parameters contributed to a longer learning
process to understand new correlations depending
on the material used. Comparing both models al-
lowed us to observe that roughness outperformed
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the tensile strength model. Results for the MLP
network show the possibility of using this method
in future studies after more data is accumulated.
A future Investigation that would help improve
this line of research is using temperature sensors
within the deposition area. It is due to the ABS
being a sensitive material to the loss of tempera-
ture in front of airflow, increments so sudden that
they cause cracking (layer delamination), and the
total sentence of the print.
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