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ABSTRACT

We study several cosmological models with Bianchi VI0 symmetries under the self-similar
approach. In order to study how the “constants” G and Λ may vary, we propose three
scenarios where such constants are considered as time functions. The first model is a perfect
fluid. We find that the behavior of G and Λ are related. If G behaves as a growing time
function then Λ is a positive decreasing time function but if G is decreasing then Λ is
negative. For this model we have found a new solution. The second model is a scalar field,
where in a phenomenological way, we consider a modification of the Klein-Gordon equation
in order to take into account the variation of G. Our third scenario is a scalar-tensor model.
We find three solutions for this models where G is growing, constant or decreasing and Λ
is a positive decreasing function or vanishes. We put special emphasis on calculating the
curvature invariants in order to see if the solutions isotropize.

Keywords: Scalar and Scalar-Tensor models, Bianchi VI0, Self-similar Solutions, Time
varying constants
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1 Introduccion

Current observations of the large scale cosmic mi-
crowave background (CMB) suggest to us that our
physical universe is expanding in an accelerated
way, isotropic and homogeneous models with a
positive cosmological constant. The analysis of
CMB fluctuations could confirm this picture. But
other analyses reveal some inconsistencies. Analy-
sis of WMAP data sets shows us that the universe
might have a preferred direction. For this reason,
it may be interesting to study Bianchi models since
these models may describe such anisotropies.

The observed location of the first acoustic peak
of the temperature fluctuations on the CMB cor-
roborated by the data obtained in different experi-
ments [1], indicates that the universe is dominated
by an unidentified “dark energy” and suggests that
this unidentified dark energy has a negative pres-
sure [2]. This last characteristic of the dark energy
points to the vacuum energy or cosmological con-
stant as a possible candidate for dark energy.

In modern cosmological theories, the cosmologi-
cal constant remains a focal point of interest (see
[3]-[6] for reviews of the problem). A wide range
of observations now compellingly suggest that the
universe possesses a non-zero cosmological con-
stant. Some of the recent discussions on the cos-
mological constant “problem” and on cosmology
with a time-varying cosmological constant point
out that in the absence of any interaction with
matter or radiation, the cosmological constant re-
mains a “constant”. However, in the presence of
interactions with matter or radiation, a solution
of Einstein equations and the assumed equation
of covariant conservation of stress-energy with a
time-varying Λ can be found. This entails that
energy has to be conserved by a decrease in the
energy density of the vacuum component followed
by a corresponding increase in the energy den-
sity of matter or radiation. Recent observations
strongly favour a significant and a positive value
of Λ with magnitude Λ(Gℏ/c3) ≈ 10−123. These
observations suggest an accelerating expansion of
the universe, q < 0, [2].

Following Maia, et al [7] who have pointed out
that although the cosmological Λ-term has a very
small value today, it may contribute to the total
energy density of the universe. For this reason,
since its present value, Λ0, may be a remnant of a

primordial inflationary stage, it seems natural to
study cosmological scenarios which include a de-
caying vacuum energy density in such a way that
it must be high enough at very early times and suf-
ficiently small at present times in order to be com-
patible with the current observations. One of the
first attempts at considering a decreasing cosmo-
logical term was formulated by Chen et al [8]. By
studying the Wheeler-DeWitt equation, they ar-
gue through dimensional considerations that the
cosmological Λ-term must follow a relationship
such as Λ ∼ t−2, in order to fit with current obser-
vations. Other mechanism to describe such vari-
ation have been formulated within the framework
of the so-called “quintessence models”. Recently
this class of models have received a great deal of
attention [9] and [10]. Taking into account dif-
ferent observational data it is possible to rule out
and to obtain “correct” potential which could play
the role of an effective cosmological constant. This
strengthens the idea of considering alternative the-
ories where the scalar field is non-minimally cou-
pled to gravity, like scalar-tensor theories (STT)
[11]. This class of theories furthermore allows the
variation of other constants such as the Newton
gravitational one. There are several STT derived
from the original one, the Brans-Dicke (BD) model
(see for example [12]-[17]). They have been for-
mulated as possible solutions to the discrepancies
with observations and try to explain the behaviour
of the universe at late times (see [18]-[21]). Of par-
ticular interest are the so called chameleon scalar-
tensor theories [22].

The study of self-similar (SS) models is quite
important since a large class of orthogonal spa-
tially homogeneous models are asymptotically self-
similar at the initial singularity and are approxi-
mated by exact perfect fluid or vacuum self-similar
power-law models. Exact self-similar power-law
models can also approximate general Bianchi mod-
els at intermediate stages of their evolution. This
last point is of particular importance in relating
Bianchi models to the real Universe. At the same
time, self-similar solutions can describe the be-
haviour of Bianchi models at late times i.e. as
t → ∞ (see [23]).

The aim of this work is to study self-similar solu-
tions of a Bianchi VI0 cosmological model in dif-
ferent contexts and where the “constants” G and
Λ may vary. We are mainly interested in finding
exact solutions for the proposed models as well as
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to compare the behavior of G and Λ in the differ-
ent contexts. In section 2 we start showing all the
geometrical ingredients that we are going to use
throughout the paper.

We put special emphasis on the study of the cur-
vature invariants in order to study whether the
obtained solutions isotropize. Once we have calcu-
lated the homothetic vector field (HVF) in section
3 we study the “classical” solution for a vacuum
and perfect fluid models comparing these solutions
with those obtained ones in a previous work (in
that work we used another Bianchi VI0 metric
[24]) as well as a perfect fluid model with time-
varying constants. In section 4, we start by study-
ing the kind of potential and scalar fields compati-
ble with self-similar solution. The stated theorems
are very general and are valid for all the Bianchi
models as well as for the FRW models. All the
proofs have been performed by studying the Klein-
Gordon equation through the Lie group method.
Once we know the scalar fields compatible with the
self-similar solution we continue studying a simple
scalar model as well as a non-interacting scalar
model with matter.

In order to incorporate a gravitational “varying-
constant” G(t) within this framework we pur-
pose, in a phenomenological way, a modified Klein-
Gordon equation. As above we need to study the
class of potential compatible with a self-similar
solution and a varying G. Two kinds of mod-
els are studied. In section 5 we study a gener-
alized scalar-tensor model that determine an ac-
celerated expansion at the present epoch, with ar-
bitrary ω(ϕ) = const. and Λ(ϕ), where this last
function plays the role of an effective cosmological
constant.

We would like to emphasize that in order to
study the resulting field equations(FE) we have
not needed to make any assumption, otherwise,
we have deduced, the form of Λ(ϕ) by studying
the conservation equation through the Lie group
method. In section 6, we summarize our results.
Finally, in the appendix A, we study through the
matter collineation method the kinds of poten-
tials compatible with a self-similar solution in the
framework of G constant. In appendix B we study,
using the same method, the G−var frameworkin
such a way that we regain through this method
the results obtained in section 4.

2 The Geometric Ingredients

We start by considering the following Killing vec-
tor fields (KFV) (see [26])

ξ1 = ∂x +mz∂y +my∂z, ξ2 = ∂y, ξ3 = ∂z, (1)

then

[ξ1, ξ2] = −mξ3, [ξ2, ξ3] = 0, [ξ3, ξ1] = mξ2. (2)

Note that in this approach is essential to consider
the m−parameter, otherwise it is impossible to
obtain self-similar (SS) solutions.

In this way it is obtained the following vector fields
{Xj}, such that, [ξi, Xj ] = 0, [Xi, Xj ] = −Ck

ijXk :

X1 = coshmx∂y + sinhmx∂z,

X2 = sinhmx∂y + coshmx∂y,

X3 = ∂x,

(3)

and the dual 1-forms:

ω1 = dx

ω2 = coshmxdy − sinhmxdz

ω3 = − sinhmxdy + coshmxdz,

(4)

The metric is defined by

ds2 = −c2dt2 + a2(t)
(
ω1
)2

+ b2(t)
(
ω2
)2

+ d2(t)
(
ω3
)2
(5)

finding that following metric when using Eq. (4)

ds2 = −dt2 + a2dx2 +
(
b2 cosh2 mx+ d2 sinh2 mx

)
dy2

−2
(
b2 + d2

)
coshmx sinhmxdydz +

(
b2 sinh2 mx

+d2 cosh2 mx
)
dz2, (6)

where we have set c = 1.

We may define the four velocity as follows:
ui = (1, 0, 0, 0) , in such a way that it is veri-
fied, g(ui, ui) = −1. From the definition of the
4−velocity we find that:

H =
1

3

(
a′

a
+

b′

b
+

d′

d

)
=

1

3

∑
i

Hi,

q =
d

dt

(
3

H

)
− 1,

(7)

and
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σ2 =
1

3

∑
i

H2
i −

∑
i̸=j

HiHj

 . (8)

Isotropization means, in essence, that at large
physical times t, when the volume factor, v = abd,
tends to infinity, the three scale factors (a, b, d)
grow at the same rate [27]. We will therefore
say, by definition, that a model is isotropizing
if, for each scale factors, a/f → const > 0,
b/f → const > 0 and d/f → const > 0, as v → ∞,
where, f = v1/3, is the mean scale factor. Then,
by rescaling some of the coordinates, we can make
a/f → 1, b/f → 1, d/f → 1 and the metric will
become manifestly isotropic at large t. Two such
criteria are A → 0 and σ → 0, where the mean
anisotropy parameter A is defined for the metric
as (see, e.g., [28])

A =
σ2

3H2
=

1

3

∑ H2
i

H2
− 1. (9)

The mean anisotropy parameter gives a dimen-
sionless measure of the anisotropy in the Hub-
ble flow by comparing the shear scalar σ to the
overall rate of expansion as described by H. The
anisotropy in the temperature of the CMBR en-
ables one to estimate the value of σ2 at the present
epoch.

We also study the curvature behaviour of the so-
lutions (see for example [29, 30, 31] and [32]).
The studied curvature quantities are the follow-
ing ones: Ricci scalar, I0 = Ri

i,Krestchmann
scalar, I1 = RijklR

ijkl, the full contraction of
the Ricci tensor, I2 = RijR

ij . The Weyl scalar,
I3 = CabcdCabcd = I1 − 2I2 +

1
3I

2
0 , as well as the

electric scalar I4 = EijE
ij , [33] and the magnetic

scalar I5 = HijH
ij , of the Weyl tensor. The Weyl

parameter W [33], which is a dimensionless mea-
sure of the Weyl curvature tensor,

W2 =
W 2

H4
=

1

6H4

(
EijE

ij +HijH
ij
)
=

I3

24H4
, (10)

can be regarded as describing the intrinsic
anisotropy in the gravitational field [34]. Cos-
mological observations can, in principle, give an
upper bound on W, although obtaining a strong
bound is beyond the reach of present-day observa-
tions.

Finally, we shall calculate the gravitational en-
tropy. From a thermodynamic point of view there

is every indication that the entropy of the uni-
verse is increasing. Increasing gravitational en-
tropy would naturally be reflected by increasing
local anisotropy, and the Weyl tensor reflects this.
One suggestion in this connection was Penrose’s
formulation of what is called the Weyl curvature
conjecture (WCC) [35]. The hypothesis is moti-
vated by the need for a low entropy constraint
on the initial state of the universe when the mat-
ter content was in thermal equilibrium. Penrose
has argued that the low entropy constraint follows
from the existence of the second law of thermo-
dynamics, and that the low entropy in the grav-
itational field is tied to constraints on the Weyl
curvature. Wainwright and Anderson [36] express
this conjecture in terms of the ratio of the Weyl
and the Ricci curvature invariants,

P 2 =
I3
I2

. (11)

The physical content of the conjecture is that the
initial state of the universe is homogeneous and
isotropic. As pointed out by Rothman and An-
ninos [37, 38] (see also [39]) the entities P 2 and
I3 are “local” entities in contrast to what we usu-
ally think of entropy. Grøn and Hervik ([30, 31])
have introduced a non-local quantity which shows
a more promising behaviour concerning the WCC.
This quantity is also constructed in terms of the
Weyl tensor, and it has therefore a direct connec-
tion with the Weyl curvature tensor but in a “non-
local form”.

For SS spacetimes, Pelavas and Lake ([40]) have
pointed out the idea that Eq. (11) is not an accept-
able candidate for gravitational entropy along the
homothetic trajectories of any self-similar space-
time. Nor indeed is any “dimensionless” scalar.
It is showed that the Lie derivative of any ”di-
mensionless” scalar along a homothetic vector field
(HVF) is zero, and concluded that such func-
tions are not acceptable candidates for the grav-
itational entropy. Nevertheless [41], since self-
similar spacetimes represent asymptotic equilib-
rium states (since they describe the asymptotic
properties of more general models), and the re-
sult P 2 = const., is perhaps consistent with this
interpretation since the entropy does not change
in these equilibrium models, and perhaps conse-
quently supports the idea that P 2 represents a
“gravitational entropy”. As we shall show W2 and
P 2 will be constant along homothetic trajectories,
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since all the dimensionless quantities remain con-
stant along timelike homothetic trajectories.

2.1 The homothetic vector field

The homothetic vector field (HVF) is calculated
from equation

LHOgij = 2gij , (12)

(see for example [42]-[46] and [47]). Algebra brings
us to obtain the following HVF:

HO= (t+ t0) ∂t +

(
1− (t+ t0)

a′

a

)
x∂x

+

(
1− (t+ t0)

b′

b

)
y∂y +

(
1− (t+ t0)

d′

d

)
z∂z ,

(13)

with the following constrains for the scale factors:

a(t) = a0 (t+ t0)
a1 ,

b(t) = b0 (t+ t0)
a2 ,

d(t) = d0 (t+ t0)
a3 ,

(14)

where a1, a2, a3 ∈ R, and the following restric-
tions for the constants a1, a2, a3 (obtained from
the Eq.(12))

a1 = 1, a2 = a3. (15)

As is observed we have been able to obtain a non-
singular solution for the scale factors. Therefore
the resulting homothetic vector field is: HO =
(t+ t0) ∂t + (1− a2) y∂y + (1− a2) z∂z.

Since we already know how the scale factors be-
have, then we may calculate all the curvature in-
variants as well as all the kinematical quantities.

H =
1 + 2a2
3 (t+ t0)

,

q = 2
1− a2
2a2 + 1

,

σ2 =

√
6

3

(a2 − 1)
2

(t+ t0)
2 ,

(16)

finding that

A =
(a2 − 1)

2

(1 + 2a2)
2 = const., (17)

where, as we can see, A ∈ (0, 1) ,∀a2 ∈ (0, 1) .
Although the quantity A is constant, this quantity

may take very small values, in fact A may runs
to zero. It is also observed that the model never
inflates since q ∈ (0, 2) , ∀a2 ∈ (0, 1) . Concerning
the curvature invariants we find that

I0 =
(
6a22 − 2m2

)
(t+ t0)

−2
,

I1 = 4
(
3
(
a42 +m4

)
− 4a32 + 2a22

(
1−m2

)
,

+ 4m2 (a2 − 1)
)
(t+ t0)

−4

I2 = 4
(
2a22 − 2a32 + 3a42 − 2a2m

2 +m4
)
(t+ t0)

−4
,

I3 = 16m2
(
m2 + 6a2 − 3

(
1 + a22

))
(t+ t0)

−4
/3,

I4 = 2m4 (t+ t0)
−4

/3,

I5 = 2m2 (a2 − 1)
2
(t+ t0)

−4
, (18)

and

W2=
m2
(
3
(
1 + a22

)
+m2 − 6a2

)
9 (1 + 2a2)

4
= const, (19)

P 2=
4m2

(
m2 + 6a2 − 3

(
1 + a22

))
3
(
2a22 − 2a32 + 3a42 + (m2 − 2a2)m2

) = const.

(20)

As above, although W2=const ≪ 1, dimension-
less quantity, it may take very small values, for
example, if a2 → 1 and m → 0 (W2 → m4/36).

3 The classical model

We shall take into account the Einstein’s field
equations (FE) written in the following form:

Rij −
1

2
Rgij = 8πGTm

ij − Λgij , (21)

where, Λ is the cosmological constant and Tm
ij , is

the energy-momentum tensor defined by

Tm
ij = (pm + ρm)uiuj + pmgij , (22)

and where the 4−velocity is defined by: ui =
(1, 0, 0, 0) , ρm is the energy density and pm is
the pressure. They are related by the equation:
pm = ωρm, with ω ∈ (−1, 1]. In this section we
study three models; vacuum solutions, a perfect
fluid model and a model with a perfect fluid and
where the constants G and Λ are time varying
function.

3.1 Vacuum solution

In this case we have found only one solution a2 =
m = 0. Therefore, the metric Eq. (6) collapses to
this one:

ds2 = −dt2 + (t+ t0)
2
dx2 + dy2 + dz2. (23)
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We may compare this solution with the one ob-
tained in the paper [24] where we were able to
obtain a new solution belonging to Bianchi VI
type. In this case, this solution does not belong to
Bianchi VI0 type, so we may say that the metric
Eq. (6) is more restrictive than the employed one
in [24]. This solution is known as the Taub form
of flat space-time ([25] chap. 9).

3.2 Perfect Fluid

For this model we obtain the following results:

a2 =
1− ω

2 (ω + 1)
∈ (0, 1) ,

m =
1

2

√
− (3ω + 1) (ω − 1)

(ω + 1)
2 ∈

(
0,

1

2

]
,

(24)

where ω ∈
(
− 1

3 , 1
)
, while the scale factors and the

energy density behave as

a(t) = a0 (t+ t0) , d = d0 (t+ t0)
a2 ,

b(t) = b0 (t+ t0)
a2 , ρ = ρ0 (t+ t0)

−γ
,

(25)

where γ = (1 + ω) (1 + 2a2) , ρ0 = A
8πG , A = 2a2+

a22−m2.With regard to the deceleration parameter

q =
1

2
(1 + 3ω) > 0

A =
(3ω + 1)

2

16
= const. ∈ (0, 1) ,

(26)

∀ω ∈
(
− 1

3 , 1
)
, so this model does not inflate, and

A →0 only when ω → − 1
3 , while the Weyl param-

eter and the gravitational entropy behaves as

W2= −
(3ω + 1)2 (ω − 1) (2ω + 1)

576
= const ∈ (0, 0.012),

(27)

P 2=
2

3

(3ω + 1)2 (5ω + 1)

(ω − 1) (3ω2 + 1)
= const,∈ (−∞, a], a → 0+,

(28)
where as it is observed, W2 ≤ 0.01, it takes a
very small values, W2 ≪ 1, and it runs to zero if
ω → 1 and ω → −1/3. Notice that our solution is
only valid if ω ∈

(
− 1

3 , 1
)
. Nevertheless P 2 has a

very pathological behaviour. For example, P 2 →
a = 2.5000 × 10−11 as ω → −1/3, P 2 = 0 when
ω = − 1

3 , and ω = − 1
5 but P 2 → −∞ when ω → 1.

Therefore, the metric collapses to this one:

ds2 = −dt2 + (t+ t0)
2
dx2 + (t+ t0)

2a2
(
cosh 2mxdy2

− 2 sinh 2mxdydz + cosh 2mxdz2
)
. (29)

Note that in [24] we obtain two solutions, while
with the metric Eq. (6) we are only able to obtain
one solution which coincides with the one obtained
in [24]. Therefore, this solution is valid when ω ∈(
− 1

3 , 1
)
and m ∈

(
0, 1

2

]
. It does not accelerate

since q > 0. Nevertheless, we may say that the
solution isotropizes since A →0 when ω → − 1

3
(then a2 → 1 = a1 and m → 0) and W2 ≪ 1.
The behaviour of P 2 shows us,that maybe, it is
not a good definition for the gravitational entropy
(at least in the framework of self-similar solutions)
as we have already discussed.
For ω = − 1

3 , and ω = 1 we get that m = 0, so
the solution does not belong to Bianchi VI0 type,
furthermore if ω = 1,then a2 = 0 i.e. we obtain
the vacuum solution.

3.3 Time varying constants model

In this framework the FE are the following ones:

a′

a

b′

b
+

a′

a

d′

d
+

d′

d

b′

b
−
(
2 +

b2

d2
+

d2

b2

)
m2

4a2
= 8πGρm + Λc2, (30)

b′′

b
+

d′′

d
+

d′

d

b′

b
+

(
2 +

b2

d2
+

d2

b2

)
m2

4a2
= −8πGωρm + Λc2, (31)

a′′

a
+

b′′

b
+

a′

a

b′

b
−
(
2 +

3d2

b2
− b2

d2

)
m2

4a2
= −8πGωρm + Λc2, (32)

b′′

b
− d′′

d
+

a′

a

b′

b
− a′

a

d′

d
+m2

(
b2

d2a2
− d2

b2a2

)
= 0, (33)

d′′

d
+

a′′

a
+

a′

a

d′

d
−
(
2 +

3b2

d2
− d2

b2

)
m2

4a2
= −8πGωρm + Λc2, (34)
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ρ′ + ρ (1 + ω)

(
a′

a
+

b′

b
+

d′

d

)
= 0, (35)

Λ′ = −8πG′ρm, (36)

where we have taken into account the condition
divT = 0.

Now, we shall take into account the obtained SS
restrictions for the scale factors given by Eq. (15).
From Eq. (35) we get

ρ = ρ0 (t+ t0)
−γ

, (37)

where γ = (ω + 1)h and h = 1+2a2, since a1 = 1
and a2 = a3.

From Eq. (30) we obtain:

Λ =
[
A (t+ t0)

−2 − 8πGρ0 (t+ t0)
−(ω+1)h

]
,

(38)
where A = 2a2+a22−m2. Now, taking into account
Eq. (36) and Eq. (38), algebra brings us to obtain

G = G0 (t+ t0)
γ−2

, G0 =
A

4πρ0 (ω + 1)
, (39)

while the cosmological “constant” behaves as:

Λ =
A

c2

(
1− 2

γ

)
(t+ t0)

−2
= Λ0 (t+ t0)

−2
.

(40)

In this case we have found the following solution

a2± =
1

2

(
1±

√
1− 4m2

)
, ∀m ∈

[
−1

2
,
1

2

]
\ {0} ,

(41)

a2+ ∈ [1/2, 1), a2− ∈ [0, 1/2), hence h± = 1+2a2±
and therefore we obtain h+ ∈ [2, 3) and h− ∈ [1, 2)

a(t) = a0 (t+ t0) , b(t) = b0 (t+ t0)
a2± ,

d = d0 (t+ t0)
a2± , ρ = ρ0 (t+ t0)

−γ± ,

G = G0± (t+ t0)
γ±−2

, Λ = Λ0± (t+ t0)
−2

,
(42)

with γ± = (ω + 1)h±. Notice that this solution is
valid ∀ω ∈ (−1, 1]. In this way the metric collapses
to Eq. (29). The behaviour of the “constants” is

the following one:

G ≈

 decreasing if (ω + 1)h± < 2
constant if (ω + 1)h± = 2
growing if (ω + 1)h± > 2

Λ0± ≈

 < 0 if (ω + 1)h± < 2
= 0 if (ω + 1)h± = 2
> 0 if (ω + 1)h± > 2

,

(43)
where h± = 1 + 2a2± = 2±

√
1− 4m2. Note that

in [24] we obtained another solution. With regard
to the deceleration parameter (for simplicity we
have performed all these calculations with h+ i.e.
with a2+)

q+ =
3

h+
− 1 > 0, q ∈

(
0,

1

2

)
, ∀m ∈

[
−
1

2
,
1

2

]
\ {0},

(44)

A=
1

4

(√
1− 4m2 − 1

)2
(√

1− 4m2 + 2
)2 = const ∈ (0, 0.06) → 0,

(45)

W2= −
m2
(
4m2 − 3 + 3

√
1− 4m2

)
18
(
2 +

√
1− 4m2

) = const ∈ (0, 0.0016)

(46)

P 2= −
4m2

(
8m2 − 3 + 3

√
1− 4m2

)
3
(
(6m2 − 3)

√
1− 4m2 + 12m2 − 8m4 − 3

) = const,

(47)

where P 2 ∈ (−∞, 0.01) , ∀m ∈
[
− 1

2 ,
1
2

]
\ {0} .

Therefore this solution is valid ∀ω ∈ (−1, 1] and
∀m ∈

(
− 1

2 ,
1
2

)
\ {0} . The model does not acceler-

ate but isotropizes since W2 → 0 as well as A ≪1.
With regard to the quantity P 2 it is observed that
P 2 → 0, ∀m ∈

(
− 1

2 ,
1
2

)
\ {0} and only runs to

minus infinity when m → ± 1
2 .

4 Scalar field model

In this section we are going to study several scalar
models. In the first place we study which kinds of
potentials are compatible with the self-similar so-
lution. For this purpose we study through the Lie
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group method the resulting Klein-Gordon equa-
tion. Once we have deduced the potential compat-
ible with the self-similar solution we study if this
kind of potential brings us to obtain self-similar
solution. We answer in this case is no, we only
obtain power law solutions but this fact does not
mean that they are self-similar solution. There-
fore, after this brief analysis on the potential, we
start by studying a simple scalar model. In sec-
ond place we study a non-interacting scalar and
matter model. We leave for a forthcoming paper
the study of the very interesting case of interact-
ing scalar and matter models (see for example [48]
and [49]). In the third class of studied models we
introduce the hypothesis of a G−var, i.e. we study
a scalar model where G = G(t), is a function of
time. In this case, in a phenomenological way, we
outline a modified Klein-Gordon equation in order
to take into account the possible variation on time
of the function G(t). We go next to study the kind
of potential compatible with a self-similar solution
and G(t). To end this section, we study a model
with scalar and matter fields and G−varying.

The stress-energy tensor may be written in the
following form:

Tϕ
ij =

(
pϕ + ρϕ

)
uiuj + pϕgij , (48)

where the energy density and the pressure of the
fluid due a scalar field are given by

ρϕ =
1

2
ϕ′2 + V (ϕ), pϕ =

1

2
ϕ′2 − V (ϕ), (49)

while the conservation equation reads (Klein-
Gordon equation)

ϕ′′ + ϕ′H +
d

dϕ
V = 0. (50)

We need to study the class of potential compatible
with the SS solution, for this reason we study by
using the Lie group method the KG equation, (for
an introduction to the Lie group method see for ex-
ample [50]-[53] and [54] for a concrete application
in cosmological contexts). In particular, we seek
the forms of V (ϕ) for which our field equations ad-
mit symmetries and therefore they are integrable.
In this case we already know that the Hubble func-
tion behaves as: H = h (t+ t0)

−1
, h ∈ R+, so the

KG equation reads

ϕ′′ + hϕ′ (t+ t0)
−1

+
dV

dϕ
= 0. (51)

Theorem 1 The only possible form for the poten-
tial V (ϕ) for a spacetime admitting a HFV, HO,
is V (ϕ) = V0 exp (κϕ) and therefore ϕ = α ln t.

Proof. The application of the Lie group method
brings us to outline the following system of PDEs

ξϕϕt
2 = 0, (52)

2htξϕ + t2ηϕϕ − 2t2ξtϕ = 0, (53)

3t2ξϕ
dV

dϕ
+ htξt − hξ + 2t2ηtϕ − t2ξtt = 0, (54)

t2η
d2V

dϕ2
+ t2ηtt + 2t2ξt

dV

dϕ
− t2ηϕ

dV

dϕ
+ 3atηt = 0, (55)

If we impose the symmetry ξ = α (t+ t0) , η = δ,
then its invariant solution is: ϕ = δ

α ln 1
α (t+ t0) ,

then, from Eq. (55), we obtain the next restriction
for the potential V

δ
d2V

dϕ2
+ 2α

dV

dϕ
= 0,

V = β exp
(
−2

α

δ
ϕ
)
+ κ, α, β, δ, κ ∈ R.

(56)

Therefore we have found, redefining the numerical
constants, that the only solution compatible with
the FE is

ϕ = ±
√
α ln (t+ t0) , V = β exp

(
∓ 2√

α
ϕ

)
.

(57)
as it is required.

Note that in this case it is possible to find more
symmetries, but the solution generated by them
are not compatible with the FE. For example, if
we impose the symmetry, ξ = αt, η = δϕ, then
Eq. (55) yields

δϕ
d2V

dϕ2
+ (2α− δ)

dV

dϕ
= 0 ⇔ V = κ1ϕ

− 2
δ
(α−δ) + κ2,

(58)
which is the potential proposed by Peebles and Ra-
tra, V ≈ ϕ−α [9], but this solution it is not com-
patible with the FE with a SS solution. Neverthe-
less we shall use this potential in the G−varying
scenario. In the appendix we give an alternative
derivation of all these results by using the matter
collineation approach following a previous paper
(see [54]). Models with a self-interaction poten-
tial with an exponential dependence on the scalar
field of the form V = β exp (∓2ϕ) , have been the
subject of much interest and arise naturally from
theories of gravity such as scalar-tensor theories or
string theories [55]. Recently, it has been argued
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that a scalar field with an exponential potential is
a strong candidate for dark matter in spiral galax-
ies [56] and is consistent with observations of cur-
rent accelerated expansion of the universe [57].

In the inverse way we may state the following the-
orem.

Theorem 2 For a scalar model if the potential
is of the form V = β exp (∓2ϕ) , then the scale
factors must follow a power law solution i.e. H =
ht−1.

Proof. As above we perform the proof by using
the Lie group method. In this case we must study
the following ODE

ϕ′′ + ϕ′H +
d

dϕ
V = 0,

where V = β exp (∓2ϕ) , then we shall study the
different forms for the function H(t) in order to
get and integrable ODE.

We have the next system of PDEs

ξϕϕ= 0, (59)

2Hξϕ + ηϕϕ − 2ξtϕ= 0,, (60)

−6e−2ϕξϕ +Hξt −H′ξ + 2ηtϕ − ξtt= 0, (61)

4e−2ϕη + ηtt − 4e−2ϕξt + 2e−2ϕηϕ +Hηt= 0, (62)

As we can easily see, the symmetry ξ = t, η = 1,
brings us to get ϕ = ln t, as invariant solution, and
from Eq. (61) we obtain the result i.e. H = ht−1,
h ∈ R.

Obviously this result does not mean that the so-
lution must be self-similar, it only means that the
scale factor must follow a power-law solution i.e.
they are of the form ai(t) = a0t

aj , with aj ∈ R+.

4.1 Scalar model

We write the FE in the following form:

a′

a

b′

b
+

a′

a

d′

d
+

d′

d

b′

b
−
(
2 +

b2

d2
+

d2

b2

)
m2

4a2
= 8πGρϕ,

(63)

b′′

b
+

d′′

d
+

d′

d

b′

b
+

(
2 +

b2

d2
+

d2

b2

)
m2

4a2
= −8πGpϕ,

(64)

a′′

a
+

b′′

b
+

a′

a

b′

b
−
(
2 +

3d2

b2
−

b2

d2

)
m2

4a2
= −8πGpϕ,

(65)

b′′

b
−

d′′

d
+

a′

a

b′

b
−

a′

a

d′

d
+m2

(
b2

d2a2
−

d2

b2a2

)
= 0,

(66)

d′′

d
+

a′′

a
+

a′

a

d′

d
−
(
2 +

3b2

d2
−

d2

b2

)
m2

4a2
= −8πGpϕ,

(67)

ϕ′′ + ϕ′2H +
d

dϕ
V= 0. (68)

By assuming the potential given by Eq. (57) it is
possible to find the next set of solutions

a2± =
1

2

(
1±

√
1− 4m2

)
, ∀m ∈

[
−1

2
,
1

2

]
\ {0} ,

a(t) = a0 (t+ t0) ,

b(t) = b0 (t+ t0)
a2± ,

d = d0 (t+ t0)
a2± ,

(69)
and

α± = 1±
√

1− 4m2, β± =
1

2

(
1±

√
1− 4m2

)2
,

(70)

ϕ = ±√
α± ln (t+ t0) , V = β± exp

(
∓ 2
√
α±

ϕ

)
.

(71)

As it is observed, we have obtained the same be-
havior for the scale factor as the one obtained in
the case of a perfect fluid with time-varying con-
stants model. For this reason, as we already know,
we get: q > 0, ∀m ∈

[
− 1

2 ,
1
2

]
\ {0} , A = const ∈

(0, 0.06) → 0, while the Weyl parameter and the
gravitational entropy behaves as W2 = const ∈
(0, 0.0016) ≪ 1, and P 2 = const ∈ (−∞, 0.01) ,
∀m ∈

[
− 1

2 ,
1
2

]
\ {0} . Therefore the model does not

accelerate but isotropizes since the quantities (A
and W2) instead of being constant, they take val-
ues very close to zero. With regard to the quantity
P 2 it is observed that P 2 → 0, (it takes values very
close to zero) ∀m ∈

(
− 1

2 ,
1
2

)
\ {0} and it only runs

to minus infinity when m → ± 1
2 .

4.2 Non-interacting scalar and mat-
ter fields

The stress-energy tensor may be written in the
following form: T = Tm + Tϕ, where the energy
density and the pressure of the fluid due a scalar
field are given by Eq. (48). This describe a non-
interacting dark matter and dark energy cosmo-
logical model (we assume that the baryon compo-
nent can be ignored). Since the nature of both
dark energy and dark matter is still unknown,
there is no physical argument to exclude the pos-
sible non-interaction between them.
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We write the FE in the following form:

a′

a

b′

b
+

a′

a

d′

d
+

d′

d

b′

b
−
(
2 +

b2

d2
+

d2

b2

)
m2

4a2
= 8πG (ρm + ρϕ) , (72)

b′′

b
+

d′′

d
+

d′

d

b′

b
+

(
2 +

b2

d2
+

d2

b2

)
m2

4a2
= −8πG (ωρm + pϕ) , (73)

a′′

a
+

b′′

b
+

a′

a

b′

b
−
(
2 +

3d2

b2
− b2

d2

)
m2

4a2
= −8πG (ωρm + pϕ) , (74)

b′′

b
− d′′

d
+

a′

a

b′

b
− a′

a

d′

d
+m2

(
b2

d2a2
− d2

b2a2

)
= 0, (75)

d′′

d
+

a′′

a
+

a′

a

d′

d
−
(
2 +

3b2

d2
− d2

b2

)
m2

4a2
= −8πG (ωρm + pϕ) , (76)

and the conservation equations now read

ρ′m + (ω + 1) ρmH = 0, (77)

and

ϕ′′ + ϕ′H +
d

dϕ
V = 0. (78)

where H = h (t+ t0)
−1

, and h = 1 + 2a2.

In this case we have found the next solutions

a2 =
1− ω

2ω + 2
∈ (0, 1)

m =
1

2

√
− (3ω + 1) (ω − 1)

1 + ω
∈
(
0,

1

2

]
,

β = αa2 = α

(
1− ω

2ω + 2

)
ρ0 =

1− ω − α (1 + ω)

(1 + ω)
2 > 0, (79)

where the constant α must verify the condition:
α > 1−ω

ω+1 > 0, ∀ω ∈
(
− 1

3 , 1
)
. Therefore we have

the following behaviour for the main quantities

ρm = ρ0 (t+ t0)
−(1+ω)h

, pm = ωρm, (80)

a1 = a0 (t+ t0), b = b0 (t+ t0)
a2 , d = d0 (t+ t0)

a2 ,
(81)

ϕ = ±
√
α ln (t+ t0) , V = β exp

(
∓ 2√

α
ϕ

)
.

(82)
Since the scale factor behaves as in the perfect
fluid solution (see above) then the deceleration pa-
rameter (as we already know) behaves as: q =
1
2 (1 + 3ω) > 0, A = (3ω+1)2

16 = const. ∈ (0, 1) ,
∀ω ∈

(
− 1

3 , 1
)
. Therefore, with the above restric-

tions on the ω−parameter our model does not in-
flate, q > 0. While the Weyl parameter and the

gravitational entropy behave as: W2 = const ∈
(0, 0.012) , and P 2 = const,∈ (−∞, a], with a →
0+ (see the above discussion about these quanti-
ties).

4.3 G−varying

We would like to study how the gravitational
varies constant when we are considering only a
scalar field. For this purpose, in analogy with
the perfect fluid case (see [58]) and in a phe-
nomenological way, by using the Bianchi identity
div (8πG(t)Tij) = 0, we propose the following con-
servation equation

Gρ′ +G (ρ+ p)H = −G′ρ ⇐⇒ ϕ′
(
□ϕ+

dV

dϕ

)
= −

G′

G
ρϕ,

(83)
which is the modified KG equation.

a′

a

b′

b
+

a′

a

d′

d
+

d′

d

b′

b
−
(
2 +

b2

d2
+

d2

b2

)
m2

4a2
= 8πG(t)ρϕ,

(84)

b′′

b
+

d′′

d
+

d′

d

b′

b
+

(
2 +

b2

d2
+

d2

b2

)
m2

4a2
= −8πG(t)pϕ,

(85)

a′′

a
+

b′′

b
+

a′

a

b′

b
−
(
2 +

3d2

b2
−

b2

d2

)
m2

4a2
= −8πG(t)pϕ,

(86)

b′′

b
−

d′′

d
+

a′

a

b′

b
−

a′

a

d′

d
+m2

(
b2

d2a2
−

d2

b2a2

)
= 0,

(87)

d′′

d
+

a′′

a
+

a′

a

d′

d
−
(
2 +

3b2

d2
−

d2

b2

)
m2

4a2
= −8πG(t)pϕ,

(88)

ϕ′′ +Hϕ′ +
dV

dϕ
= −

G′

G

1

ϕ′ ρϕ. (89)
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In order to solve the FE we need to solve Eq. (83).
To that end, we shall study it through the LG
method. Eq. (83) could be rewritten in the fol-
lowing form

ϕ′′ϕ′ + ht−1ϕ′2 +
dV

dϕ
ϕ′ + ρϕ

G′

G
= 0, (90)

where H = ht−1. For simplicity, and without lost

of generality, we consider H = ht−1 instead of its
non-singular form. As above, we are seeking the
forms of V (ϕ) and G(t) for which our field equa-
tions admit symmetries and therefore they are in-
tegrable

As above, in order to study the possi-
ble solutions to Eq. (90) we apply the
LG method, where the standard procedure
brings us to get the following system of PDEs

ξϕϕ = 0, (91)

ηϕϕ − 2ξtϕ +

(
2ht−1 +

G′

G

)
ξϕ = 0, (92)

2ηtϕ +

(
1

2

(
G′′

G
−
(
G′

G

)2
)

− ht−2

)
ξ + 3Vϕξϕ +

(
ht−1 +

G′

2G

)
ξt − ξtt = 0, (93)

ηtt + Vϕϕη + 4
G′

G
V ξϕ +

(
ht−1 +

G′

2G

)
ηt + 2Vϕξt − Vϕηϕ = 0, (94)(

G′′

G
−
(
G′

G

)2
)
V ξ +

G′

G
Vϕη + 3

G′

G
V ξt − 2

G′

G
V ηϕ = 0, (95)

G′

G
V ηt = 0, (96)

where, Vϕ = dV
dϕ . The following symmetry

ξ =
−t

α
, η = ϕ =⇒ ϕ = t−α (97)

then we obtain the following restrictions, from
Eqs. (93-95). From Eq. (93) we get

G′′ =
G′2

G
− G′

t
=⇒ G = κ1t

g, (98)

while from Eq. (94) we obtain

Vϕϕϕ−
(
2

α
+ 1

)
Vϕ = 0 =⇒ V = κ2ϕ

2( 1
α+1),

(99)

in this way V = κ2 (t+ t0)
−2(α+1)

. So we have
found that the main quantities behave as follows

ϕ = (t+ t0)
−α

,

V = κ2ϕ
2( 1

α+1) = κ2 (t+ t0)
−2(α+1)

,

G = κ1 (t+ t0)
g
,

(100)

such that g−2 (α+ 1) = −2, and therefore g = 2α.
Note that we may redefine the constants in order
to get V ≈ ϕ−α.

Theorem 3 The only compatible form for the po-
tential V (ϕ) with the FE for a spacetime admitting
a HFV, HO, where G = G(t), is V (ϕ) = V0ϕ

−α

and therefore ϕ = (t+ t0)
β
, and G = κ1 (t+ t0)

g
,

with α, β, g ∈ R.

Taking into account all these results we have found
the next solution

a2 =
1

2

(
1±

√
1− 4m2

)
, ∀m ∈

[
−1

2
,
1

2

]
\ {0} ,

α = α > 0, G0 = const. > 0, (101)

β =

(
1− 2m2

)
G0

+
√
(1− 4m2),

so the behaviour of the main quantities is the fol-
lowing one

a1 = a0 (t+ t0) , b = b0 (t+ t0)
a2 , d = d0 (t+ t0)

a2 ,
(102)

ϕ = ϕ0 (t+ t0)
−α

, V = β (t+ t0)
−2(α+1)

,

G = G0 (t+ t0)
2α

.
(103)

Notice that this is the same solution for the scale
factor than in the above models. Therefore, with
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the above restrictions on the m−parameter our
model does not inflate q > 0. i.e. the model does
not accelerate but isotropizes since W2 → 0 as
well as A. With regard to the quantity P 2 it is
observed that P 2 → 0, ∀m ∈

(
− 1

2 ,
1
2

)
\ {0} and it

only runs to minus infinity when m → ± 1
2 . With

regard to the gravitational constantG, we have ob-
tained that it is an increasing time function since
α > 0.

4.4 G variable with matter and a
scalar field

We start by rewriting the stress-energy tensor in
the following way, T ij = T ij

m + T ij
ϕ , where T ij =

(p̃+ρ̃)uiuj+p̃gij , and ρ̃ = ρm+ρϕ and p̃ = pm+pϕ,
and taking into account the Bianchi identity

div (8πG(t)Tij) = 0

Gρ̃′ +G (p̃+ ρ̃)H = −G′ρ̃,
(104)

i.e.

ρ′m + (ρm + pm)H + ϕ′
(
□ϕ+

dV

dϕ

)
= −

G′

G

(
ρm + pϕ

)
.

(105)
We may study Eq. (105) in several ways. One of
them, maybe the simplest one, may be spliting it
into

ρ′m + (ρm + pm)H = −G′

G
ρm, (106)

ϕ′
(
□ϕ+

dV

dϕ

)
= −G′

G
ρϕ. (107)

Notice that this approach is similar to a scenario
describing an interacting scalar and matter fields.

There the FE for this model are:

a′

a

b′

b
+

a′

a

d′

d
+

d′

d

b′

b
−
(
2 +

b2

d2
+

d2

b2

)
m2

4a2
= 8πG(t) (ρm + ρϕ) , (108)

b′′

b
+

d′′

d
+

d′

d

b′

b
+

(
2 +

b2

d2
+

d2

b2

)
m2

4a2
= −8πG(t) (ωρm + pϕ) , (109)

a′′

a
+

b′′

b
+

a′

a

b′

b
−
(
2 +

3d2

b2
− b2

d2

)
m2

4a2
= −8πG(t) (ωρm + pϕ) , (110)

b′′

b
− d′′

d
+

a′

a

b′

b
− a′

a

d′

d
+m2

(
b2

d2a2
− d2

b2a2

)
= 0, (111)

d′′

d
+

a′′

a
+

a′

a

d′

d
−
(
2 +

3b2

d2
− d2

b2

)
m2

4a2
= −8πG(t) (ωρm + pϕ) , (112)

ρ′m + (ρm + pm)H = −G′

G
ρm, (113)

ϕ′′ +Hϕ′ +
dV

dϕ
= −G′

G

1

ϕ′

(
1

2
ϕ′2 + V (ϕ)

)
. (114)

With a potential given by Eq. (100) we have found the next solution

a2 =
1

2

(
1±

√
1− 4m2

)
∀m ∈

[
−1

2
,
1

2

]
\ {0} , α = α > 0,

β =
3ω
(
1±

√
(1− 4m2)

)
+G0α (1− ω) + 1±

√
(1− 4m2)− 4m2 (1 + ω)

2G0 (ω + 1)
,

ρ0 =
1±

√
(1− 4m2)−G0α

2

G0 (ω + 1)
, G0 = const. > 0, (115)

thus

ρm = ρ0 (t+ t0)
−((ω+1)h+2α)

,

pm = ωρm,
(116)

a1 = a0 (t+ t0) , b = b0 (t+ t0)
a2 ,

d = d0 (t+ t0)
a2 ,

(117)
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ϕ = ϕ0 (t+ t0)
−α

, V = β (t+ t0)
−2(α+1)

,

G = G0 (t+ t0)
2α

.
(118)

Therefore, as in the last model, with the above
restrictions on the m−parameter our model does
not accelerate but isotropizes since W2 → 0 as
well as A. With regard to the quantity P 2 it is
observed that P 2 → 0, ∀m ∈

(
− 1

2 ,
1
2

)
\ {0} and

only runs to minus infinity when m → ±1
2 . G is

an increasing time function as in the above model.

5 Scalar-tensor model

We consider the following field equations for the
BD model [59],

Rij −
1

2
gijR =

8π

ϕ
Tm
ij + Λ(ϕ) gij +

ω

ϕ2

(
ϕ,iϕ,j

− 1

2
gijϕ,lϕ

,l
)
+

1

ϕ
(ϕ;ij − gij□ϕ) ,

(119)

□ϕ+
1

2
ϕ,lϕ

,l d

dϕ
ln

(
ω (ϕ)

ϕ

)
+

1

2

ϕ

ω (ϕ)

(
R+ 2

× d

dϕ
(ϕΛ (ϕ))

)
= 0. (120)

The arbitrary functions ω (ϕ) and Λ (ϕ) distin-
guish the different scalar-tensor theories of gravi-
tation. Λ (ϕ) is a potential function and plays the
role of a cosmological constant, and ω (ϕ) is the
coupling function of the particular theory. Tm

ij is
the matter stress-energy tensor.

The last equation can be substituted by

□ϕ+
2

3 + 2ω (ϕ)

(
ϕ2 dΛ

dϕ
− ϕΛ (ϕ)

)
=

1

(3 + 2ω (ϕ))

×
(
8πT − dω

dϕ
ϕ,lϕ

,l
)
,

(121)

where T = T i
i is the trace of the stress-energy

tensor, where we have assumed ϕ = ϕ(t), and the
derivatives respect t are denoted by a comma. Fur-
thermore it is verified the following relationship:
divT = 0, i.e.

ρ′ + (ρ+ p)H = 0. (122)

In what follows we shall assume ω (ϕ) = const,
Λ = Λ (ϕ). The corresponding field equations

with a perfect fluid for the matter content in the
homogeneous line element (Bianchi VI0 model)
will be calculated. Thus the field equations are

a′

a

b′

b
+

a′

a

d′

d
+

d′

d

b′

b
−
(
2 +

b2

d2
+

d2

b2

)
m2

4a2
=

8π

ϕ
ρ−H

ϕ′

ϕ
+

ω

2

(
ϕ′

ϕ

)2

+ Λ(ϕ) , (123)

b′′

b
+

d′′

d
+

d′

d

b′

b
+

(
2 +

b2

d2
+

d2

b2

)
m2

4a2
= −8π

ϕ
p− ϕ′

ϕ

(
d′

d
+

b′

b

)
− ω

2

(
ϕ′

ϕ

)2

− ϕ′′

ϕ
+ Λ(ϕ) ,

(124)

a′′

a
+

b′′

b
+

a′

a

b′

b
−
(
2 +

3d2

b2
− b2

d2

)
m2

4a2
= −8π

ϕ
p− ϕ′

ϕ

(
a′

a
+

b′

b

)
− ω

2

(
ϕ′

ϕ

)2

− ϕ′′

ϕ
+ Λ(ϕ)

− cosh (mx)
2 ϕ′

ϕ

(
d′

d
− b′

b

)
, (125)

b′′

b
− d′′

d
+

a′

a

(
b′

b
− d′

d

)
+

m2

a2

(
b2

d2
− d2

b2

)
=

ϕ′

ϕ

(
b′

b
− d′

d

)
, (126)

d′′

d
+

a′′

a
+

a′

a

d′

d
−
(
2 +

3b2

d2
− d2

b2

)
m2

4a2
= −8π

ϕ
p− ϕ′

ϕ

(
a′

a
+

d′

d

)
− ω

2

(
ϕ′

ϕ

)2

− ϕ′′

ϕ
+ Λ(ϕ)

− cosh (mx)
2 ϕ′

ϕ

(
d′

d
− b′

b

)
, (127)

(3 + 2ω (ϕ))

(
ϕ′′

ϕ
+H

ϕ′

ϕ

)
− 2

(
Λ− ϕ

dΛ

dϕ

)
=

8π

ϕ
(ρ− 3p) , (128)

ρ′ + (ρ+ p)H = 0. (129)
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Since we are only interested in finding self-similar solutions then, if we take into account our previous
results, i.e. b = d, the FE reads

2
a′

a

b′

b
+

(
b′

b

)2

− m2

a2
=

8π

ϕ
ρ−H

ϕ′

ϕ
+

ω

2

(
ϕ′

ϕ

)2

+ Λ(ϕ) , (130)

2
b′′

b
+

(
b′

b

)2

+
m2

a2
= −8π

ϕ
p− 2

ϕ′

ϕ

b′

b
− ω

2

(
ϕ′

ϕ

)2

− ϕ′′

ϕ
+ Λ(ϕ) , (131)

a′′

a
+

b′′

b
+

a′

a

b′

b
− m2

a2
= −8π

ϕ
p− ϕ′

ϕ

(
a′

a
+

b′

b

)
− ω

2

(
ϕ′

ϕ

)2

− ϕ′′

ϕ
+ Λ(ϕ) , (132)

d′′

d
+

a′′

a
+

a′

a

d′

d
− m2

a2
= −8π

ϕ
p− ϕ′

ϕ

(
a′

a
+

b′

b

)
− ω

2

(
ϕ′

ϕ

)2

− ϕ′′

ϕ
+ Λ(ϕ) , (133)

and the conservation equations

(3 + 2ω (ϕ))

(
ϕ′′

ϕ
+H

ϕ′

ϕ

)
− 2

(
Λ− ϕ

dΛ

dϕ

)
=

8π

ϕ
(ρ− 3p) ,

(134)

ρ′ + (ρ+ p)H= 0, ⇔ ρ = ρ0t
−α, (135)

where H = h (t+ t0)
−1

, with h = (1 + 2a2) , and
α = h (1 + γ), we are taking into account the
equation of state p = γρ, γ ∈ (−1, 1].

In order to solve the resulting FE we need to in-
tegrate

(3 + 2ω)

(
ϕ′′

ϕ
+

h

t

ϕ′

ϕ

)
− 2

(
Λ− ϕ

dΛ

dϕ

)
=

8π

ϕ

(1− 3γ) ρ0

tα
,

(136)

We may study this equation through the LG
method, i.e. we study the kind of functions Λ (ϕ)
such that this equation is integrable in a closed
form. We start by rewriting it in an appropriate
way

ϕ′′+ht−1ϕ′−B

(
Λ− ϕ

dΛ

dϕ

)
ϕ−Ct−α = 0, (137)

where

h = (1 + 2a2) , B =
2

(3 + 2ω)
,

C =
8π (1− 3γ) ρ0

(3 + 2ω)
,

(138)

and we shall deduce that α = 2− n.

t2ξϕϕ = 0, (139)

2ht−1ξϕ + ηϕϕ − 2ξϕt = 0, (140)

− 3
(
Bϕ (Λ− ϕΛϕ) + Ct−α

)
ξϕ + ht−2 (tξt − ξ)

+ 2ηtϕ − ξtt = 0, (141)

Bη
(
ϕ2Λϕϕ − (Λ− ϕΛϕ)

)
− 2Bϕ (Λ− ϕΛϕ) ξt

+
C

t−α

(
α
ξ

t
− 2ξt

)
+

(
Bϕ (Λ− ϕΛϕ) + C

C

t−α

)
ηϕ

+
h

t
ηt + ηtt = 0. (142)

For example, if we impose the symmetry

ξ = t, η = nϕ, (143)

brings us to obtain the following restriction on
Λ (ϕ) . From Eq. (142) we get

Bϕ
(
nϕ2Λϕϕ − 2

(
Λ− ϕΛϕ

))
+ Ct−α (α− 2 + n) = 0,

(144)
and therefore, we find as result, that:

n = 2− α, (145)

and

nϕ2Λϕϕ − 2 (Λ− ϕΛϕ) = 0 =⇒ Λ = ϕ−2/n,
(146)

is a solution. In fact the most general solution is
Λ = C1ϕ + C2ϕ

−2/n. This result is valid for all
the self-similar Bianchi models. Furthermore, the
symmetry Eq. (143) brings us to obtain a par-
ticular solution of Eq. (137) which is given by,
ϕ = ϕ0t

n, with ϕ0 ∈ R, with n = 2−α, and the fol-
lowing constrains on the numerical constants must
be verified: n(n − 1) + hn − 2(1 + 2

n )B − C = 0,
α = h (1 + γ) = (1 + 2a2) (1 + γ) . We would like
to emphasize that other solutions could be ob-
tained with this procedure by imposing other sym-
metries.
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We find the following solution:

ϕ0 = ϕ0, ϕ0 = 1, Λ0 = 0,

a2 = − (γ − 1) (ω (γ − 1)− 1)

2ω (γ2 − 1) + γ − 3
, a2 = 0, ⇔ γ = 1,

q =
2 (ω ((3γ + 1) (γ − 1))− 2)

4ω (γ − 1) + 3γ − 5
, q = 0, ⇔ γ = A±,

ρ0 = − (3 + 2ω)
2
(γ − 1)

3

8π (2ω (γ2 − 1) + γ − 3)
, ρ0 = 0, ⇔ γ = 1,

m =
(γ − 1)

√
−2 (3 + 2ω) (ω ((3γ + 1) (γ − 1))− 2)

2 (2ω (γ2 − 1) + γ − 3)
,

m = 0, ⇔ γ = 1 ∧A±,

n =
− (3γ − 1) (γ − 1)

2ω (γ2 − 1) + γ − 3
, n = 0, ⇔ γ = 1 ∧ 1

3
,

(147)

where A± =

(
ω±

√
2ω(2ω+3)

)
3ω .

We get for the BD parameter ω that according to
solar system experiments is ω ≈ 500. (see [60]). A
better estimation of this parameter should be ob-
tained from measure of other cosmological param-
eters in order to constrain ω more strongly than
by means of solar system experiments (see [61]).
However, theories of the very early Universe such
as string theory, are better described in the con-
text of JBD, which shows that ω can take negative
values (see for example [62]). A recent value for ω
is ω ≈ 3300 [16].

If we fix ω = 3300, then we get the following re-
sults

A+= 1.0002, A− = −0.33348,m > 0, ∀γ ∈ (A−, 1],

a2 ≥ 0, ∀γ ∈ (−1, 1], q =

 < 0 ∀γ < A−
= 0 γ = A−
> 0 ∀γ > A−

,

ρ0 ≥ 0, ∀γ ∈ (−1, 1], n =

 > 0 ∀γ < 1/3
= 0 γ = 1/3 ∧ 1
< 0 ∀γ ∈

(
1
3 , 1
) .

(148)

Therefore this solution, with ω = 3300, is only
valid ∀γ ∈ (A−, 1]. Note that if γ < A− then m is
not defined. This means that

a = a0 (t+ t0) , b = b0 (t+ t0)
a2 , d = d0 (t+ t0)

a2 ,

H = h (t+ t0)
−1

, ρ = ρ0 (t+ t0)
−α

,Λ = 0,

ϕ = ϕ0 (t+ t0)
n

(149)

and therefore the scale factors are increasing time
functions, the energy density is a positive time

decreasing function. The solution does not in-
flate since q > 0 ∀γ ∈ (A−, 1]. ϕ is a positive
growing time function if γ ∈ (A−, 1/3), it is con-
stant if γ = 1/3 and it behaves as a decreasing
time function if γ ∈ (1/3, 1), if γ = 1 then it
behaves as a constant. This means that G is a
decreasing time function if γ ∈ (A−, 1/3), it be-
haves as a true constant if γ = 1/3 ∧ 1 and if
γ ∈ (1/3, 1) then it is a growing time function.
The cosmological “constant”, Λ vanishes. Notice

that α = (4ω(γ−1)+3γ−5)(γ+1)
2ω(γ2−1)+γ−3 .

In order to check if the solution isotropize we com-
pute the quantities A and W2, obtaining

A =

(
ω
(
γ2 − 2γ − 1

)
− 2
)2

(4ω (γ − 1) + 3γ − 5)
2 = const ∈ (0, 1)

(150)

W2 = −
(γ − 1)

2 (
ω
(
γ2 − 2γ − 1

)
− 2
)2

36 (4ω (γ − 1) + 3γ − 5)
4

×
(
8ω ((2γ + 1) (γ − 1))− 3γ2 + 6γ − 15

)
,

(151)

W2 = const ∈ (0, 0.01), ∀γ ∈ (A−, 1] and
ω = 3300. A(A−) = W2(A−) = 0. With re-
gard to the gravitational entropy we have ob-
tained the following behaviour: P 2(A−) = 0,
if γ ∈ (A−,−0.2000969530) then P 2 > 0,
P 2(−0.2000969530) = 0 and it runs to −∞
∀γ ∈ (−0.2000969530, 1], so once again, we have
checked that this quantity is not a good definition
for gravitational entropy.

5.1 The particular case γ = 1/3.

In this case T = 0 and therefore we find the next
solution

ϕ0 = ϕ0, ϕ0 = 1,

Λ0 =
1

6

[
(3 + 2ω)

(
4m+

√
3
)2]

,

Λ0 = 0 ⇐⇒ m = −
√
3

4
,

a2 =

√
3

3

(
3m+

√
3
)
, a2 = 0 ⇐⇒ m = −

√
3

3
,

q =
−2m

2m+
√
3
, q =

{
> 0 ∀m < 0
< 0 ∀m > 0

,
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ρ0= −
1

16π

(
32ω

(
m+

1

4

√
3

)2

+ 9 + 24m
√
3 + 44m2

)
,

α =
4
√
3

3

(
2m+

√
3
)
,

ρ0 = 0 ⇔ m = −
√
3
(
4ω ±

√
2ω + 3 + 6

)
16ω + 22

,

n = −2
√
3

3

(
4m+

√
3
)
, n = 0 ⇔ m = −

√
3

4
.

(152)

If we fix ω = 3300, then we get the following re-
sults

ρ0 > 0, ∀m ∈ I, α > 0, ∀m ∈ I,

Λ0 ≥ 0, ∀m ∈ I, Λ0 = 0 ⇔ mΛ0 = −
√
3

4
= −0.43301,

a2 > 0, ∀m ∈ I, a2 = 0 ⇔ m = −
√
3

3
/∈ I,

q > 0, ∀m ∈ I,

n =

 > 0 ∀m ∈ (−0.43569,mΛ0)
= 0 m = mΛ0

< 0 ∀m ∈ (mΛ0
,−0.43036)

, (153)

therefore this solution, with ω = 3300, is only valid
∀m ∈ I, where I = (−0.43569,−0.43036) . Note
that mΛ0

∈ I,

Λ0 (mΛ0) = 0, a2 (mΛ0) =
1

4
, q (mΛ0) = 1,

ρ0 (mΛ0
) = 1.4921× 10−2.

(154)
This means that

a = a0 (t+ t0) , b = b0 (t+ t0)
a2 , d = d0 (t+ t0)

a2 ,

H = h (t+ t0)
−1

, ρ = ρ0 (t+ t0)
−α

, ϕ = ϕ0 (t+ t0)
n

(155)

and therefore the scale factors are growing time
functions, the energy density is a positive time
decreasing function. The solution does not in-
flate since q > 0 ∀m ∈ I. ϕ is a positive grow-
ing time function if m ∈ (−0.43569,mΛ0

), it is
constant if m = mΛ0

and it behaves as a de-
creasing time function if m ∈ (mΛ0 ,−0.43036).
This means that G is a decreasing time function
if m ∈ (−0.43569,mΛ0

) , it behaves as a true con-
stant if m = mΛ0

and if m ∈ (−0.43569,mΛ0
)

then it is a growing time function. The cosmo-
logical “constant”, Λ is a positive decreasing time
function except in m = mΛ0 .

6 Conclusions

In this paper we have studied some Bianchi types
VI0 (with an unusual metric) models under the
self-similarity hypothesis. We have started by
comparing our results with the “classical” perfect
fluid solution already studied by Collins, Wain-
wright and Hsu and other authors [24]. Further-
more, we have been able to improve the solutions
since we have found a non-singular solution for the
scale factors i.e. they behave as a(t) ∼ (t+ t0)

a1 .
However, the metric employed in this paper is very
restrictive, since it allows us to obtain less solu-
tions than with the usual one [24]. Nevertheless
we have been able to obtain a new solution for
the case of a perfect fluid with time-varying con-
stants. This solution is not inflationary but it is
very close to isotropizing since the quantities A
and W2 take values very close to zero. In fact,
for an adequate selection of the parameters ω and
m they run to zero. This solution is valid for all
ω ∈ (−1, 1] and m ∈ [−1/2, 1/2] . In this case we
have been able to enlarge the range of validity for
the equation of state and we have shown that if
G behaves as a growing time function then Λ is a
“positive” decreasing time function. In the same
way, if G is decreasing then Λ behaves as a “nega-
tive” decreasing time function. With regard to the
gravitational entropy, we have come to the con-
clusion that the quantity P 2 is not an acceptable
candidate for gravitational entropy along the ho-
mothetic trajectories of any self-similar spacetime
(in all the cases studied in this paper).

In the second model we have studied a scalar field.
We have started this section by calculating the po-
tentials compatible with the self-similar solutions.
Inversely, we have proved that for such scalar fields
the scale factor must follow a power law solution.
These theorems are very general and are valid for
all Bianchi models. We have studied two cases.
From the first one, with a scalar field alone, we
have obtained a solution that is not inflationary
but it could be considered to be very close to
isotropize, since, as above, since the quantities A
and W2 take values very close to zero. In the sec-
ond case, we have studied a non-interacting scalar
and matter fields. The solution is not inflationary
but isotropize as in the previous cases, and it is
valid ∀ω ∈ (−1/3, 1) and m ∈ (0, 1/2]. In order
to incorporate into this framework a variable G,
we have proposed, in a phenomenological way, a
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modified Klein-Gordon equation. We have stud-
ied the kind of potential compatible with a self-
similar solution and a variable G. Once we have
deduced the potential and the scalar field then we
study two cases, a scalar field with a G−var and a
scalar field with a matter field. The conservation
equation outlined in this case is quite similar to
the one employed in the case of interacting scalar
fields. The solutions obtained are similar since the
scale factor is the same and therefore they are not
inflationists and close to isotropize. In both cases,
G behaves as a positive increasing time function.

n the scalar-tensor model, for simplicity, we have
chosen, ω (ϕ) = const. and Λ (ϕ) playing the role
of an effective cosmological constant. As we have
shown, the resulting FE are quite difficult to study.
Nevertheless, since we are only interested in study-
ing self-similar solutions, we have been able to sim-
plify the FE. We would like to stress that we have
not needed to make any assumption in order to in-
tegrate them. By using the Lie group method we
have obtained a possible form for the dynamical
cosmological constant, Λ (ϕ) = ϕ−2/n = t−2, since
ϕ = ϕ0t

n. In the same way, we emphasize that
this result is valid for all the self-similar Bianchi
models. With this result we have obtained sev-
eral solutions for the model. We have considered
that the first of the obtained solutions is unphys-
ical since ρ0 < 0 if the coupling parameter ω is
positive as the recent observations suggest. Nev-
ertheless if we consider ω < 0, as it is suggested
by the string theories [62], this solution has phys-
ical meaning. In the second solution, Λ = 0 and
it is only valid when γ ∈ I, where I = (A−, 1],
where A− = −0.33348 if ω = 3300 as recent ex-
periments suggest [16]. For such values ϕ behaves
as a growing time function if γ ∈ (A−, 1/3) , it is
constant if γ = 1/3 ∧ 1 and it is a positive de-
creasing time function in the interval γ ∈ (1/3, 1) .
Therefore, G is decreasing, constant and grow-
ing in the same intervals. In the same way we
have found that this solution does not inflate since
q > 0, γ ∈ I, which is unusual. We may also say
that this solution would be considered to be very
close to an isotropy state since the Weyl param-
eter, W2 ≪ 1. In fact this quantity takes values
very close to zero γ ∈ I. We have also studied the
particular solution γ = 1/3. In this case the trace
of the stress-energy tensor vanishes and therefore
the conservation equation reduces to a very sim-
ple ODE. This solution is only valid for a very

restrictive interval, m ∈ Im = (m1,m2) , where
ρ0 > 0. We have found that in this case Λ be-
haves as a positive decreasing time function ex-
cept when m = mΛ0 ∈ I, for which, Λ (mΛ0) = 0.
In the same way, we have found that ϕ is a grow-
ing time function when m ∈ (m1,mΛ0

) , it is con-
stant if m = mΛ0

and it behaves as a decreasing
time function if m ∈ (mΛ0 ,m2) . G behaves in the
inverse way in the same intervals. This solution
does not inflate as the one above does. Finally we
would like to stress the fact that, in this solution,
the exponents, a2, n and α are irrational numbers.
This could have implications for the integrability
of the FE (see [63, 64]).

Appendix

A Matter collineation for the
scalar model

In this section we shall study the matter
collineations for the scalar field following a method
employed in [54]. We start by defining a generic

vector field X = (Xi (t, x, y, z))
4
i=1 ∈ X(M). The

energy-momentum tensor is defined by Eq. (22).
The metric tensor gij is defined by Eq. (6). In
recent years, much interest has been shown in the
study of matter collineation (MCs) (see for exam-
ple [65]-[73]). A vector field along which the Lie
derivative of the energy-momentum tensor van-
ishes is called an MC, i.e. LXTij = 0,where Xi

is the symmetry or collineation vector. Also, as-
suming the Einstein field equations, a vector Xi

generates an MC if LXGij = 0. It is obvious that
the symmetries of the metric tensor (isometries)
are also symmetries of the Einstein tensor Gij , but
this is not necessarily the case for the symmetries
of the Ricci tensor (Ricci collineations) which are
not, in general, symmetries of the Einstein ten-
sor. If X is a Killing vector (KV) (or a homoth-
etic vector), then LXTij = 0, thus every isome-
try is also an MC but the converse is not true, in
general. Notice that collineations can be proper
(non-trivial) or improper (trivial). A proper MC
is defined to be an MC which is not a KV, or a ho-
mothetic vector. Carot et al (see [66]) and Hall et
al.(see [67]) have noticed some important general
results about the Lie algebra of MCs. Let M be
a spacetime manifold. Then, generically, any vec-
tor field X ∈ X(M) which simultaneously satisfies
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LXTab = 0 (⇔ LXGab = 0) and LXCa
bcd = 0 is a

homothetic vector field i.e. LXg = 2g.

The usual matter collineation equations read,
LXTϕ

ij = 0, Tϕ
ij is given by Eq. (48), finding, in this

case, that the obtained matter collineation (MC)
is:

X = X1∂t+(X ′
1 −X1H2) y∂y+(X ′

1 −X1H2) z∂z,
(A.1)

which is a proper MC, and where, as it is observed,
if X1 = (t+ t0), then it is regained the usual ho-
mothetic vector field (see Eq. (13)) i.e. a improper
MC.

For this reason we may also check that the ho-
mothetic vector field also verifies the equation,
LHOTij = 0, (note that it is verified LHOC

a
bcd = 0)

that we may develop as follows:

ρ′t+ 2ρ = 0,

aa′ + taa′′ − t
(
a′
)2

= 0,

g33y

(
b′

b
+ t

b′′

b
− t

b′2

b2

)
+ g34z

(
d′

d
+ t

d′′

d
− t

d′2

d2

)
= 0,

g34y

(
b′

b
+ t

b′′

b
− t

b′2

b2

)
+ g44z

(
d′

d
+ t

d′′

d
− t

d′2

d2

)
= 0,

g22

(
tp′ + 2p− 2pt

a′

a

)
+ tpg′22 = 0,

g33

(
tp′ + 2p− 2pt

b′

b

)
+ tpg′33 + px∂xg33

(
1− t

a′

a

)
= 0,

g34

(
tp′ + 2p− 2pt

(
b′

b
+

d′

d

))
+ tpg′34 + px∂xg34

×
(
1− t

a′

a

)
= 0,

g44

(
tp′ + 2p− 2pt

d′

d

)
+ tpg′44 + px∂xg44

(
1− t

a′

a

)
= 0.

(A.2)

As we can see, actually, the only ODEs that must
by satisfied are:

ρ′t+ 2ρ = 0, (p′t+ 2p) = 0, (A.3)

which are equivalent. Hence

ρ′t = −2ρ, LHρ = ρ′t = −2ρ, (A.4)

i.e.(
ϕ′′ϕ′ +

dV (ϕ)

dϕ
ϕ′
)
t+ 2

(
1

2
ϕ′2 + V (ϕ)

)
= 0,

(A.5)
that we may split into

t (ϕ′′ϕ′) + ϕ′2 = 0, t
dV

dϕ
ϕ′ + 2V = 0, (A.6)

where
tϕ′′ + ϕ′ = 0 ⇒ ϕ = κ ln t, (A.7)

i.e. LHϕ′ = 0. With regard to the second equation

dV

dϕ
κ+ 2V = 0 ⇒ V = Ke−

2
κϕ, (A.8)

i.e. LHV = −2V . Note that from Eq. (A.7),
ϕ′t = κ. We also may study the complete equation
(A.5) i.e.

ϕ′′ +
dV

dϕ
+ ϕ′t−1 + 2V (tϕ′)

−1
= 0, (A.9)

under the LG method. The standard procedure
brings us to get the next system of PDE:

t2ξϕϕ = 0,

(A.10)

t2ηϕϕ − 2t2ξtϕ + 2tξϕ = 0,
(A.11)

2t2ηtϕ − t2ξtt + tξt + 3t2ξϕ
dV

dϕ
− ξ = 0,

(A.12)

t2ηtt + 8tξϕV + 2t2ξt
dV

dϕ
− 2t2ηϕ

dV

dϕ
+ tηt

+ηt2
d2V

dϕ2
= 0,

(A.13)

−2ξV + 6tξtV + 2tη
dV

dϕ
− 4tηϕV = 0,

(A.14)

tηtV = 0.
(A.15)

The symmetry, ξ = αt, η = δ, brings us to obtain
the following restriction on the potential (from Eq.
(A.13) and (A.14))

2
dV

dϕ
+

d2V

dϕ2
= 0, 2V +

dV

dϕ
= 0, (A.16)

and therefore we obtain as solution

V = exp (−2ϕ) ϕ = ln t. (A.17)

Therefore we may state the following theorem.

Theorem 4 The only possible form for the poten-
tial V (ϕ) for a spacetime admitting a HFV, HO
is V (ϕ) = V0 exp (κϕ) and therefore ϕ = ln t.
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Sometimes it is interesting to study the symme-
tries of the tensor T j

i ∈ T 1
1 (M). In this case the

matter collineation equations read LHOT
j
i = 0, iff

ρ′ = 0, and p′ = 0, which is equivalent to

ϕ′′ = ±dV (ϕ)

dϕ
, (A.18)

where as we can see this approach is related with
the variational symmetries.

In this case the solution of Eq. (A.18) is the fol-
lowing one

t =

∫ ϕ

± da√
−2V (a) + C1

+ C2. (A.19)

The Lie group methods applied to Eq. (A.18)
gives

ξϕϕ = 0, (A.20)

ηϕϕ − 2ξtϕ = 0, (A.21)

2ηtϕ − ξtt + 3ξϕ
dV

dϕ
= 0, (A.22)

ηtt + 2ξt
dV

dϕ
− ηϕ

dV

dϕ
+ η

d2V

dϕ2
= 0, (A.23)

where, for example, the symmetry ξ = t, η = 1
brings us to obtain, from Eq. (A.23), the following
restriction on the potential V

2
dV

dϕ
+

d2V

dϕ2
= 0, (A.24)

i.e. a solution like this: V = exp (−2ϕ) , and there-
fore, ϕ = ln t.

B Matter collineation for the
scalar model with G(t)

If the stress-energy tensor stand for a scalar model
then it takes the following form:

Tij = (ρ+ p)uiuj + pgij , (B.1)

where

ρ =
1

2
ϕ′2 + V (ϕ), p =

1

2
ϕ′2 − V (ϕ).

Then Eq.
LHO (G(t)Tij) = 0,

reads
G′

G
+

ρ′

ρ
= −2

t
⇔ Gρ ≈ t−2,

now reads
ρ′

ρ
= −

(
2

t
+

G′

G

)
,

i.e.

ϕ′′ = −dV (ϕ)

dϕ
−
(
2

t
+

G′

G

)(
1

2
ϕ′ +

V (ϕ)

ϕ′

)
.

We may follow different tactics. The first one con-
sists in studying the whole equation

ϕ′′ = −dV (ϕ)

dϕ
−
(
2

t
+

G′

G

)(
1

2
ϕ′ +

V (ϕ)

ϕ′

)
.

(B.2)

The second one will consist in splitting the ODE
in the following form (as in the standard case)

ϕ′′ = −
(
1

t
+

G′

2G

)
ϕ′, (B.3)

dV (ϕ)

dϕ
= −

(
2

t
+

G′

G

)
V (ϕ)

ϕ′ , (B.4)

in such a way that solving (B.3) then we will be
able to integrate (B.4).

Eq. (B.3) has the following solution

ϕ = C1

∫
dt

t
√

G(t)
+ C2. (B.5)

In the same way Eq. (B.3) admits the following
symmetries:

ξϕϕ= 0,

2

(
1

t
+

G′

2G

)
ξϕ + ηϕϕ − 2ξtϕ= 0,(

1

t
+

G′

2G

)
ξt +

(
−

1

t2
+

G′′

2G
−

G′2

2G2

)
ξ + ηtϕ − 2ξtt= 0,(

1

t
+

G′

2G

)
ηt + ηtt= 0,

where the symmetry

ξ = t, η = −bϕ ⇒ ϕ = ϕ0t
−b, (B.6)

brings us to obtain the following constrain on func-
tion G(t) :

G′′ =
G′2

G
− G′

t
, (B.7)
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whose solution is

G = G0t
k, k ∈ R. (B.8)

From

Gρ ≈ t−2 ⇒ Gϕ′2 ≈ t−2 ⇔ k = 2b. (B.9)

Now, Eq. (B.4) yields

dV (ϕ)

dϕ

ϕ′

V (ϕ)
= −2 (1 + b) t−1,

whose integration gives

lnV = −2 (1 + b) ln t ⇔ V = t−2b−2,

such that Eq. (B.2) is verified and therefore

V = ϕα =
(
t−αb

)
= t−2b−2 ⇔ α =

2

b
(b+ 1) .

The main quantities behave as follows

ϕ = ϕ0t
−b, G = G0t

2b, V = V0t
−2(b+1),

H = ht−1, h ∈ R.
(B.10)

In the same way we also may study the following
equation

ϕ′′ = −dV (ϕ)

dϕ
−
(
2

t
+

G′

G

)(
1

2
ϕ′ +

V (ϕ)

ϕ′

)
,

(B.11)
through the Lie group method. Eq.
(B.11) admits the following symmetries:

ξϕϕ = 0,

2

(
2

t
+

G′

G

)
ξϕ + 2ηϕϕ − 4ξtϕ = 0,

6Vϕξϕ +

(
2

t
+

G′

G

)
ξt +

(
− 2

t2
+

G′′

G
− G′2

G2

)
ξ + 4ηtϕ − 2ξtt = 0,

8

(
2

t
+

G′

G

)
V ξϕ + 4Vϕξt − 2Vϕηϕ +

(
2

t
+

G′

G

)
ηt + 2Vϕϕη + 2ηtt = 0,(

2

t
+

G′

G

)
Vϕη + 3

(
2

t
+

G′

G

)
V ξt − 2

(
2

t
+

G′

G

)
V ηϕ −

(
− 2

t2
+

G′′

G
− G′2

G2

)
V ξ = 0,(

1

t
+

G′

2G

)
V ηt = 0.

As above, the symmetry

ξ = t, η = −bϕ =⇒ ϕ = ϕ0t
−b, (B.12)

brings us to obtain the following constrain on function G(t) :(
2

t
+

G′

G

)
+

(
− 2

t2
+

G′′

G
− G′2

G2

)
t = 0, (B.13)

4Vϕ + 2bVϕ − 2bVϕϕϕ = 0, (B.14)

−b

(
2

t
+

G′

G

)
Vϕϕ+ 3

(
2

t
+

G′

G

)
V + 2b

(
2

t
+

G′

G

)
V − t

(
− 2

t2
+

G′′

G
− G′2

G2

)
V = 0. (B.15)

Eq. (B.15) may be rewritten as

−b

(
2

t
+

G′

G

)
Vϕϕ+

(
(2b+ 3)

(
2

t
+

G′

G

)
− t

(
− 2

t2
+

G′′

G
− G′2

G2

))
V = 0,
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while from Eq. (B.13) we get

G′′ =
G′2

G
− G′

t
, ⇒ G = G0t

k, k ∈ R. (B.16)

From Eq. (B.14) we get

Vϕϕ =
2 + b

b

Vϕ

ϕ
⇒ V = V0ϕ

2
b (b+1) = V0t

−2(b+1).

(B.17)
Notice that we have obtained the same results as
in the splitting case.

The main quantities behave as follows

ϕ = ϕ0t
−b, G = G0t

2b,

V = V0t
−2(b+1), H = ht−1, h ∈ R.

(B.18)
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