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ABSTRACT

In this work, we present an application of classical reliability models in the study of the
lifespan of electrical components present in a Brazilian logistics rail company. The main
idea is that based on the failure history of different groups of electronic components, relevant
information for the company’s decision making can be ob- tained, such as the equipment
lifetime behavior and and reliability prediction. At first, we present a brief introduction and
quick development of the main concepts behind imperfect repair model and its ARA and
ARI classes. For each group of com- ponents we estimate the models parameters, select
the one with a better evaluation, analyse its the adequacy and present prediction results.
The results obtained attest to the advantages of the imperfect repair models for the fit and
interpretation of the studied dataset.

Keywords: Reliability analysis; maximum likelihood estimation; imperfect repair models;
power law process; reliability predictor.

21



Eder S. Brito et. al., 36 (2022) 21-31

1 Introduction

One of the major problems faced by modern engi-
neering is the occurrence of equipment failures in
industries and factories. These failures occur nat-
urally due to the wear of machine parts and com-
ponents, transport vehicles and/or several other
types of complex equipment that are essential for
the core business of these companies. As a conse-
quence, such failures lead to losses that include not
only machine repair, but also delay in the produc-
tion of products or provision of services and even
loss of customers.

In this sense, the repair actions carried out soon af-
ter the occurrence of a failure are essential to avoid
further damage to this type of company. There-
fore, understanding the failure process and the im-
pact of repairs performed on these equipment is
essential for cost reduction and work optimization
policies to be implemented.

This type of problem is well established in the area
of Reliability, within the field of Statistics. In the
reliability literature, systems that can return to
normal operating conditions after a failure has oc-
curred are called repairable systems. It is natural
to think that complex systems used in industries
and engineering companies are re- pairable, since
it would not be feasible to discard them after a
failure has occurred.

The theoretical scope used for repairable systems
is naturally related to recurrent events, since suc-
cessive failures can occur for the same system (de-
tails in [1]). In this sense, the statistical model-
ing for these recurrent events in repairable sys-
tems is done by counting processes [2]. In the
literature of repairable systems, it is widely as-
sumed that recurrent failures occur following a
Non-Homogeneous Poisson Process (NHPP), and,
in particular, one of its most important and
known parametric forms is the Poisson Law Pro-
cess (PLP), proposed by [3].

Moreover, the effect of the repair performed imme-
diately after the failure is a crucial characteristic
for the repairable system models and its defini-
tion is related to the system’s failure process. The
most widely known and discussed assumption in
the literature is that after performing a repair, the
system returns to the same condition as it was im-
mediately before the failure, in a situation known
as “as bad as old” (ABAO). This type of repair

is called a minimal repair (MR) and more details
can be found in works like [4] and [5]. On the
other hand, there is also an assumption that the
repaired system undergoes a renewal process, that
is, after the repair, the system assumes a condition
“as good as new” (AGAN). This type of repair is
known as perfect repair and some works in the
literature consider it as [6] and [7].

However, these two repair assumptions are not suf-
ficient for real situations in the world of industry
and engineering companies. It is expected that
there are numerous situations where the repair will
leave the system in an intermediate situation be-
tween AGAN and ABAO. This type of interme-
diate repair is called imperfect repair (IR) and it
does not return the system to the same conditions
as the PR, but leaves it in a better condition than
a MR. The characteristic of wide applicability in
real situations makes this type of repair a good
assumption for modeling the failure times of re-
pairable systems.

The motivation of this work is a real situation in-
volving problems of failure of electrical and elec-
tronic components of locomotives of a Brazilian
logistics company of rail transport. After failing,
these components are sent to the company’s main-
tenance laboratory, where they are restored and
put back into operation. In this way, the objec-
tive of the study is to use the failure times of these
equipment to understand the behavior of their life-
time and identify the efficiency of the repairs that
are being performed. In this sense, the hypothe-
sis that the repairs performed are IR seems to be
plausible, since these equipment are not replaced
and the repairs can improve the lifetime in some
way. Furthermore, as will be discussed later, the
models that involve IR are more general than the
others and allow the quantification of the efficiency
of the repairs performed.

Therefore, the goal of this work is to carry out a re-
view of the literature about imperfect repair mod-
els and apply them to the modeling of real data
involving failure times of a series of electrical and
electronic components of locomotives. Frequentist
methods will be used to estimate the parameters
of the models presented. In addition, reliability
predictors will be presented and applied in order
to estimate the future behavior of the failure time
of the systems under study, an extremely impor-
tant result for the strategic organization of main-
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tenance by industries and engineering companies.

The paper is organized as follows. In Section 2, we
present the theory known in the literature about
IR. In Section 2.1, we present some basic ideas
about counting pro- cesses that underlie model-
ing theory for repairable systems; in Section 2.2
we present IR models based on the idea of virtual
age presented by [8]; in Section 2.3 we present the
ARA and ARI classes of the IR models presented
by [9]; in Section 2.4 we present the modeling pro-
posed by [10] for multiple repairable systems under
IR condition, as well as the definition of reliability
predictors taking into account this type of repair.
In Section 3, we apply the models presented to fit
five sets of data regarding the failure times of five
different types of locomotive components. Finally,
in Section 4, we high- light the main theoretical
results presented in this work and their relevant
application to a real situation and indicate some
directions for future research.

2 Imperfect Repair Models

In this section we present a literature review of the
theory of imperfect repair models. The idea is to
present the base theory used for modeling systems
under this type of repair so that they can be ap-
plied in the study of the central problem proposed
in this work, in Section 3.
We start with the main ideas of counting pro-
cesses to model the failure lifetimes, highlighting
the non-homogeneous Poisson processes. Then, we
discuss the first ideas of imperfect repair and vir-
tual age defined by Kiijimas and the definition of
imperfect repair classes ARA and ARI. Finally, we
review the contributions of Toledo’s work, which
deals with estimation for multiple repairable sys-
tems under imperfect repa

2.1 Basic Assumptions

Let N(t) be the number of observed failures of a
single repairable system in the time interval (0, t]
and 0 < T1 < T2 a sequence of random variables
that represent the failure times of this system and
assume that the repair actions have negligible du-
ration. Then the system failure process can be
characterized by the two processes {N(t)}t≥0 and
{T (t)}t≥0 and is completely determined by the

failure intensity function given by

λ(t) = lim
∆t→0

P[N(t, t+∆t] ≥ 1|Ht]

∆t
(1)

where Ht is the minimal filtration defined by the
history of the process at time t and N(t, t+∆t] =
N(t+∆t)−N(t).

If process {N(t)}t≥0 has independent increments,
N(0) = 0 and the intensity function λ(t)is non-
constant, then the failure process is said to be
a non-homogeneous Poisson process (NHPP). In
this case, the mean cumulative function (MCF)
can be equivalently called the cumulative fail-
ure intensity function and defined by Λ(t) =

E[N(t)] =
∫ t

0
λ(u)du.

Furthermore, this intensity function λ(t) may or
may not take a parametric form. One of the most
known and used parametric forms for this type of
process in the reliability literature is the Power-
Law Process (PLP), where the failure intensity
function and the cumulative intentity function are
defined, respectively, by

λ(t|β, η) = β

η

( t

η

)β−1

and ∆(t|β, η) = β

η

( t

η

)β

(2)
with t≥ 0 and the parameters β > 0 and η > 0 are
the shape and scale parameters,respectively. This
parameterization proposed by [3] is defended by
the authors of the area [11] because it is flex-
ible, has an easy computational implementation
and has a physical interpretation in the following
sense: the parameter β indicates whether the sys-
tem is improving (β < 1) or deteriorating (β > 1)
over time, while the parameter η indicates the ex-
pected time so that only one failure occurs in the
system (that is, E[N(η)] = λ(η) = 1).

In the context of minimal repairs where the repair
performed after the failure does not impact the
system intensity function, if a PLP is assumed,
the failure process is simply characterized by the
expression λ(t) in equation 1. In the context of im-
perfect repairs, this function will be discounted af-
ter each failure and its respective repair. However,
until the first failure/repair the intensity function
is the same, with the same behavior for any type of
repair and, for this reason, it can be called the ini-
tial failure intensity function or simply the initial
intensity function.
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2.2 Virtual Age Models

Kijima [8] was one of the pioneers in the discus-
sion of IR models. The idea of these authors was
to propose a maintenance policy capable of balanc-
ing the prolonged times of deterioration of systems
and the high cost of perfect repairs and/or replace-
ment of these systems. The proposed model there-
fore introduced the concept of virtual age.
The main idea is that after repair, the system will
assume an unreal “new age” that describes the
current condition of the system compared to a new
system. The virtual age is a positive function of
the real age and the history of system failures, that
is, Vt = V (t|N(t);T1, ..., TN(t)), where Vt repre-
sents the virtual age at time t.

More formally, let t be a failure time of a system,
VN(t) its virtual age and N(t) the number of fail-
ures/repairs at the time. If VN(t) = v, the time
XN(t)+1 between the N(t)-th and the (N(t) + 1)-
th failures of the system works according to

P[XN(t)+1 = x|VN(t) = v] =
F (x+ v)− F (v)

1− F (v)
(3)

where F (x) is the lifetime distribution of a new
system.

In this sense, Xn is the additional age after the
(n − 1)−th failure. However, the idea of the pro-
posed model is that there is an efficiency in the
repairs performed, which will consequently reduce
the additional age Xn. In other words, a measure
an ∈ (0, 1) that represents the repair efficiency can
be multiplicatively included in the model, reduc-
ing Xn and defining a virtual age to the system.

In work [12], Kijima et al. defined two IR models,
depending on how the repairs performed affect the
virtual age of the system. In the first model, the n-
th repair affects only the n-th age increment Xn,
and in this case the repair effect an reduces the
increment Xn to anXn, so that the virtual age
after the n-th failure and repair is defined by Vn =
Vn−1 + anXn. On the other hand, in the second
model, the n-th repair affects the current virtual
age Vn of the system and, in this case, the effect
an reduces the virtual age Vn, which will now be
defined by Vn = an(Vn−1+Xn). Note that in both
models, if an = 1 for all n ≥ 1, the particular case
of MR is obtained since Vn =

∑
n≥1 Xn for all n,

whereas if an = 0 for all n ≥ 1, the particular case
of PR is obtained since Vn = 0 for all n.

2.3 The ARA and ARI Classes of
IR Models

Doyen and Gaudoin proposed in their work [9] two
new classes for IR models based on how the repair
effect can reduce the model’s initial intensity func-
tion. The first, ARA class (Arithmetic Reduction
of Age) based on the reduction on the virtual age
of system and the second, ARI class (Arithmetic
Reduction of Intensity) based on the proportional
reduction on the intensity function of the system.
The authors use the idea of virtual age and repair
effect from Kijima et al. and propose generaliza-
tions of the models presented above. Both classes
proposed by Doyen and Gaudoin are defined by a
memory m, which indicates that each repair ac-
tion reduces the system wear that occurs after the
last m failures. The memory m can be interpreted
as the maximum number of previous failures that
impact the effect of an actual repair. Note that
the intensity function of the system is recalculated
after each failure, considering the m most recent
failure times.

Regarding the repair effect, in these models the
authors consider that it is constant for all repairs
performed. This effect is measured by a parameter
θ, such that 0 ≤ θ ≤ 1 as in the models by Kijima
et al..

2.3.1 The ARAm class model

The principle of the ARAm class, according to
[9] is to consider that repair rejuvenates the sys-
tem such that its intensity at time t is equal to
the initial intensity at time Vt, where V t < t.
The failure intensity of an ARA model can be
written as a function of its virtual age, that is,
λARAm

(t) =λ (Vt), where λ(Vt)is the initial inten-
sity function.

Considering the repair effect parameter θ and a
memory m, the failure intensity function for a
model of the ARAm class is defined as

λARAm (t) = λ

(
t− (t− θ)

min(m−1,N(t)−1)∑
p=0

θpTN(t)−p

)
(4)

Two important particular (and extreme) cases of
the ARAm class are the ARA1 and ARA∞ models.
If m = 1, the failure intensity function for the
ARA1 model is given by

λARA1
(t) = λ(t− (1− θ)TN(t)) (5)
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On the other hand, in the class ARA∞ it is as-
sumed that each repair reduces the virtual age of
the system by an amount proportional to its age
immediately before the repair. In this case, the
failure intensity function is given by

λARA∞ (t) = λ

(
t− (t− θ)

N(t)−1∑
p=0

θpTN(t)−p

)
(6)

The particular class ARA1 corresponds to the sec-
ond virtual age model proposed by Kijima et al.
in [8]. In this case, the MR and PR models are
particular cases when θ = 1 or θ = 0, respectively.

2.3.2 The ARIm class model

The basic idea of the ARIm class model is to con-
sider that each repair reduces the intensity of fail-
ure, depending on the failure history of the pro-
cess. Thus, the failure intensity function of the
ARIm model, given the repair effect parameter θ
and the history of the last m observed failures in
the system, is defined as

λARIm (t) = λ(t)− (1− θ)

min(m−1,N(t)−1)∑
p=0

θpλ(TN(t)−p)

(7)
where λt is the initial failure intensity function of
the process.
Analogous to the ARA class, in the ARIm model
we can consider the existence of two extreme cases,
ARI1 and ARI∞. If m = 1 the failure intensity
function for the ARI1 model is given by

λARI1(t) = λ(t)− (1− θ)λ(TN(t)) (8)

In the ARI∞ class, each repair reduces the inten-
sity of the failure by a proportional value to the
intensity of the current failure, in a cumulative
sense of intensity reduction since the first repair.
In this case, the failure intensity function is given

by

λARI∞ (t) = λ(t)− (1− θ)

N(t)−1∑
p=0

θpλ(TN(t)−p) (9)

2.4 Estimation for Multiple Re-
pairable Systems

Toledo et al. [10] used the models defined by
Doyen and Gaudoin and proposed infer- ential
methods for estimating their parameters consid-
ering both ARA and ARI classes from the failure

histories of multiple repairable systems. In addi-
tion, in their work the authors also proposed a
graphical goodness-of-fit analysis and a reliability
prediction estimator from the best fit model. Be-
low we present the main points of these ideas.

2.4.1 Parameters Estimation

Let us consider that k independent repairable sys-
tems are under observation for a predefined time
t∗k , with k = 1, 2, .... Let 0 < ti,1 < ti,2 < · · · <
ti,ni

be the observed failure times of the i-th sys-
tem, where ti,1 ≤ t∗k represents the time of the j-
th failure in the i-th system, with i = 1, ..., k and
j = 1, ..., ni. In this case, ni is the number of ob-
served failures of the i-th system andN =

∑k
i=1 ni

is the total number of failures observed in k sys-
tems.

Considering that the initial intensity function λ(t)
is described by a parametric model and that the
k systems are subjected to imperfect repairs with
effect θ ∈ [0, 1] after each failure, we will denote by
µ the vector of model’s parameters, which includes
the parameters of the initial intensity function and
the repair efficiency parameter θ.

According to [10], the likelihood function
for the parameter vector µ in the ARAm

and ARIm models is given, respectively, by

LARAm (µ|t) =
k∏

i=1

{
n1∏
j=1

[
λ0(ti, j − (1− θ)s(ti,j − 1))e−Λ0(ti,j−(1−θ)s(ti,j−1))

×e−Λ0(ti,j−(1−θ)s(ti,j−1))

]
e−Λ0

(
t∗i −(1−θ)s(ti,ni

)
)
+Λ0

(
ti−(1−θ)s(ti,ni

)
)}

(10)

LARIm (µ|t) =
k∏

i=1

{
n1∏
j=1

[
λ0

(
ti, j) + (1− θ)s(ti,j−1)

)
e−Λ0(ti,j+λ0

(
ti,j−1−(1−θ)s(ti,j−1)

)]

×e−Λ0(t
∗
i )+λ0

(
ti,ni

+(t∗i −ti,ni
(1−θ)s(ti,ni

)

}
(11)
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where t = (t1,1, ..., tk,nk
) denotes the vector of all

the observed failure times and

s(ti,l) =

min(m−1,l−1)∑
p=0

θpti,l−p

s(ti,l) =

min(m−1,l−1)∑
p=0

θpλ0(ti,l−p)

(12)

Assuming that the initial failure process of
the systems follows a PLP, the intensity
and cumulative intensity functions given in
(1) can be substituted in the (4) and (5)
equations, obtaining a parametric likelihood
function for the ARAm and ARIm models,
respectively. In addition, the log-likelihood
functions for the ARAm and ARIm classes can
also be calculated and are respectively given by

lARAm (µ|ti,j) =N(log(β)− β log(η)) + (β − 1)

k∑
i=1

ni∑
j=1

log
(
ti,j − (1− θ)s(ti,j−1)

)

−
1

ηβ

k∑
i=1

ni∑
j=1

[(
ti,j − (1− θ)s(ti,j−1)

)β −
(
ti,j−1 − (1− θ)s(ti,j−1)

)β]

−
1

ηβ

k∑
i=1

[(
t∗i − (1− θ)s(ti,ni )

)β −
(
ti,ni − (1− θ)s(ti,ni )

)β] (13)

lARIm (µ|ti,j) =N(log(β)− β log(η)) +

k∑
i=1

ni∑
j=1

log

(
tβ−1
i,j − (1− θ)s(ti,j−1)

)

−
1

ηβ

k∑
i=1

ni∑
j=1

[
tβi,j − tβi,j−1 − β(ti,j − ti,j−1)(1− θ)s(ti,j−1)

]

−
1

ηβ

k∑
i=1

[
t∗i − tβi,ni

− β(t∗i − ti,ni )(1− θ)s(ti,ni )

]
(14)

where s(ti,l) =
min(m−1,l−1)∑

p=0

θptβ−1
i,l−p

Given the complexity of the log-likelihood func-
tions (6) and (7), the maximum likelihood esti-

mates β̂, η̂ and θ̂ of the parameters β, η and θ must
be obtained by maximizing these functions using
numerical methods, as pointed out by [10]. Fur-
thermore, the asymptotic properties of the max-
imum likelihood estimators based on the Normal
distribution are used to construct the confidence
intervals of the parameters.

2.4.2 Reliability Predictor

With the parameter estimates of the IR models,
it is possible to estimate the reliability prediction
of a system from the last observed failure time
T − n = tn and observe the expected behavior of
the lifetime of this system. Our interest is to esti-
mate the time t = Tn+1− tn until the next failure
considering the history Htn until the last observed
failure tn. The reliability prediction function at

time t is expressed as

R(t) =P[Tn+1 − tn > t|Htn ]

=P[N(tn + t)−N(tn) = 0|Htn ]

= exp

{
−
∫ tn+t

tn

λ(u)du

} (15)

where λ(t) is the intensity function of the model
and tn ≤ u ≤ tn + 1 < Tn+1.
For the ARAm class, substituting the intensity
function λ(t) in equation (8) by the intensity func-
tion λARAm

given in (2), we obtain the predictor

RARAm(t) = exp

{
−

∫ tn+t

tn

λARAm(u)du

}

=exp

{
− 1

ηβ

[
(tn + t− (1− θ)s(tn))

β

+ (tn − (1− θ)s(tn))
β
]}

(16)
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Figure 1: History length distribution of the pieces presented in the dataset according to groups of
components.

In the same way, for the ARIm class we introduce
the intensity function λARIm given in (3) into the
equation (8) and we obtain the predictor

RARIm(t) = exp

{
−
∫ tn+t

tn

λARIm(u)du

}

=exp

{
− 1

ηβ

[
(tn + t)β − (tn)

β

− t(1− θ)βs(tn)

]} (17)

Furthermore, from the reliability prediction func-
tion we can obtain the mean time to failure
(MTTF) at the time Tn = tn, that is, the ex-
pected time to the next failure occurring after a
time tn for a given system. The MTTF at the time
tn is given by

MTTFtn = E[Tn+1 − tn|Htn ] =

∫ ∞

0

R(t)dt (18)

where R(t) is given by (9) and (10) for the ARAm

and ARIm classes of IR model.

3 Real Data Applications

The dataset used in this work was obtained from
a Brazilian logistics rail company that has a whole
mechanism of different types of equipment. Each

unit registered in the software has a repair history,
followed by its technical problems and the evalua-
tion of the technicians during repair.

In this case, it is relevant to study the quality of
the repairs based on system failure history to help
the technicians in the decision making process of
verifying if a piece should be officially discarded or
if it is worth to be refixed given its reliability pre-
dictor. The dataset is composed by five classes of
different unit types. For each one of these groups
it was assigned a unique model for their future
lifespan predictions.

Figure 1 shows the distribution of the number of
observed fails for each equipment group. It is clear
that the mean number of repairs from each unit is
relatively low for all groups. That is, a unit will
contain at max 9 fails followed by its repairs.

Each data point will contribute for the informa-
tion in the likelihood function from two separate
cases: one of them involves handling the informa-
tion about the actual fail times occurred during
the unit lifetime and the other one concerning the
time between the data sampling and the piece’s
last fail. The latter indicates the need of the ap-
plication of reliability models truncated in time t∗,
which represents the time during which the unit
was still working when the dataset was obtained.

For each groups of equipment we tested three dis-
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Figure 2: Log likelihood maximum estimate for group 5.

tinct model approaches, based on the type of re-
pair considered. One of these models is the mini-
mal repair model (MR), that considers that once a
unit is repaired, its intensity function doesn’t suf-
fer an actual reduction, keeping the piece’s instant
fail risk the same as before it broke. The other two
models correspond to classes ARAm and ARImof
IR, and, in these cases, all possible failure memo-
ries m were tested for each group.

First of all, it is necessary to select the best mem-
ory m to fit the data from the ARAm and ARIm
models and the criterion used for this selection
is simply the one with the highest log-likelihood.
The results for all groups and both classes are
shown in Figure 2. In this case, for almost all
the groups, it happened when m = 1 for both
ARA and ARI models. This is an interesting re-
sult from the dataset, and is justified by the large
proportion of components that have only one fail-
ure during the observed period, as shown in Fig-
ure 1. For the groups 1, 2, 4 and 5 it was clearly
observed a decrease in the quality of the fit with
the increasing value for m. On the other hand,
there is an increasing pattern of the maximum log-
likelihood maximum only on group 3, precisely the
group in which more failures were observed for a
single system. In addition, the expected stability
of maximum log-likelihood when the memory m
value tends to infinity [13] were observed for all
the five groups.

After choosing the best fits of the ARA and ARI
classes, these fits were compared with the fit by
the MR model. The Akaike Information Crite-
rion (AIC) and the Bayesian Information Criterion
(BIC) were used to decide which of the models re-
sulted in a better fit of the data. The estimation
results by the three models for each equipment
group is given by Table 1. In addition, the best
model for each group is marked by ∗ in Table.
The results presented in Table 1 allow some con-
clusions about the lifetime of the components and
the repairs performed.

Initially, note that the estimate β̂ is greater than
1 in all groups, indicating that the systems are de-
grading over time. As stated in Section 2.1, the
estimate η̂ indicates the expected time for exactly
one failure in the system, so if we consider, for ex-
ample, a component of Group 1, it is expected that
one failure occurs in approximately 3758 days.

The AIC and BIC criteria attest that the groups
1, 2 and 3 were best explained by the MR model,
suggesting the unit repair does not result in a de-
crease of the instant risk function. In groups 4 and
5, on the other hand, the repair effect parameter θ
shows suggests a slightly decrease in the intensity
function, representing an actual effect on the re-
pair efficiency. Note that in these last two groups
the 95% CI do not indicate an approximation to
MR or PR, reaffirming the existence of a repair
effect impacting the intensity function.
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Table 1: Parameters estimation results for each of the six groups.

Group Model β̂ (95% CIβ̂) η̂ (95% CIη̂) θ̂ (95% CIθ̂) AIC BIC

ARA1 2,30 (2.04, 2.55) 3758.06 (3493.70, 4022.42) 1 (0.80, 1) 4894,73 4906,96
1 ARI1 2,30 (2.03, 2.56) 3758.06 (3500.49, 4015.64) 1 (0.74, 1) 4894,73 4906,96

MR∗ 2,30 (2.05, 2.54) 3758.06 (3522.37, 3993.76) — 4892,73 4900,88

ARA1 2,76 (2.37, 3.15) 3465.04 (3228.40, 3701.68) 0.89 (0.70, 1) 2812,69 2823,59
2 ARI1 2,72 (2.35, 3.10) 3482.34 (3241.23, 3723.45) 0.86 (0.52, 1) 2813,24 2824,14

MR∗ 2,68 (2.32, 3.04) 3523.11 (3300.64, 3745.59) — 2811,78 2819,05

ARA1 2,08 (1.84, 2.32) 2947.46 (2721.86, 3173.06) 1 (0.75, 1) 5636,62 5649,21
3 ARI1 2,08 (1.86, 2.30) 2947.49 (2718.83, 3176.15) 1 (0.74, 1) 5636,62 5649,21

MR∗ 2,08 (1.87, 2.29) 2947.49 (2752.48, 3142.50) — 5634,62 5643,02

ARA∗
1 2,46 (2.05, 2.88) 2444.53 (2222.00, 2667.06) 0.57 (0.41, 0.74) 2534,18 2544,48

4 ARI1 2,33 (1.99, 2.68) 2460.06 (2219.19, 2700.92) 0.48 (0.24, 0.72) 2535,85 2546,15
MR 2,09 (1.76, 2.42) 2681.28 (2431.47, 2931.09) — 2543,79 2550,66

ARA1 1,61 (1.41, 1.80) 1657.66 (1493.87, 1821.45) 0.64 (0.33, 0.95) 4550,52 4562,66
5 ARI∗1 1,61 (1.43, 1.78) 1598.60 (1427.61, 1769.59) 0.69 (0.48, 0.89) 4547,11 4559,25

MR 1,53 (1.36, 1.70) 1728.6 0(1567.17, 1890.03) — 4551,49 4559,59

Figure 3: History length distribution of the pieces presented in the dataset according to groups of
components.

For the suitability tests of the five groups it was
used mainly the graphical con- struction proposed
by [10], using the empirical MCF values from the
data compared to a mean of the estimation from
the parametric models. As pointed out by [7], the
non-parametric estimation of the MCF is obtained
based on the Nelson-Aalen proce- dure and the
goodness-of-fit plot comparison is that the better
the fit the closer the empirical MCF will be to that
estimated by the model. As shown in Figure 3 it
was observed an overall good fit of the models for

all groups studied.

Based on the fitted parameters, each individual
unit can be described by the selected models. Fig-
ure 4 shows the predicted reliability functions for
the units in each group with the most number
of fails and repairs. Taking the unit observed in
group 1, for example, we can see that the reliabil-
ity probability for 7500 days after the last failure
is very close to zero, given the entire history of the
failure process.
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Figure 4: History length distribution of the pieces presented in the dataset according to groups of
components.

Table 2: Mean estimated times until next failure in components with the most number of fails in each
group, in days.

Unit 1 2 3 4 5

Mean 949.71 1138.28 774.14 821.57 1053.92

Finally, using the equation (11), the mean esti-
mated lifetime from the last repair of these units
were calculated and are given in Table 2.

4 Conclusion

In this paper we presented the main concepts of re-
liability analysis for repairable systems subjected
to imperfect repairs after each failure. A litera-
ture review about IR models was performed and
inferential methods for estimating their respective
parameters and predicting reliability were estab-
lished.

An interesting new dataset were presented and an-
alyzed in the context of the two classes ARA and
ARI of the IR models. Some obtained results are
not commonly seen in the literature, in which the
increasing memory of the imperfect repair model
in fact leads to a reduction of the quality of the
model. As mentioned before, the probable cause
for this effect is the fact that there are many units
with a single observed fail, supporting the concept
of using an inferior memory valuem for the ARAm

and ARIm classes.

In the five groups of failure times observed, all of
them could be reasonably described by the para-
metric models as the plots on the empirical MCF
values suggests. As a result, it was possible to
make predictions for the units failure times using
directly the models selected for this task.

The results of this paper attest to the applicabil-
ity of IR models, since the objective of modeling
and making predictions on a real dataset of failure
times of multiple repairable systems was achieved.
Based on these results, the models used could con-
tribute for a more complex investigation of the
data, for example, to study the minimization of
the maintenance cost when a fail occurs and to
search ways to indicate the disposal of pieces that
show low predictions for their remaining lifespans.
In this sense, as a proposal for future work, our
research group intends to revisit the dataset pre-
sented in this paper to improve the analyzes under
these new possibilities.
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