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ABSTRACT

In this paper, we study the equation of state admissible for a flat FRW models filled with
a bulk viscous fluid by using the Lie group method. It is found that the model admits
scaling symmetries iff the bulk viscous parameter γ = 1/2. In this case, it is found that the
main quantities follow a power law solution and in particular the bulk viscous pressure Π
has the same order of magnitude as the energy density ρ, in such a way, that it is possible
to formulate the equation of state Π = κρ, where κ ∈ R− (i.e. is a negative numerical
constant). If we assume such relationship we find again that the model is scale invariant iff
γ = 1/2. We conclude that the model accepts a scaling symmetry iff γ = 1/2 and that for
this value of the viscous parameter, Π = κρ, but the hypothesis Π = κρ does not imply
γ = 1/2, and that the model is scale invariant.

Keywords: Full Viscous Cosmological Models, Full Causal Theory, Lie Groups, Scale In-
variant.
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1 Introduction

As it is known in General Relativity (GR) there is
a dualism between spacetime and matter. While
the structure of the spacetime is governed by the
field equations the physical properties of mat-
ter are introduced through the energy-momentum
tensor attending to diverse physical considera-
tions. Some of these considerations come from
fields of the physic where gravity does not play
any role and are assumed in GR. As the Einstein
equations together Bianchi identities form an un-
determined system of equations, it is necessary to
introduce equation of state, some of them ad hoc,
in such a way that the resulting system of equa-
tions may be integrated. Such system satisfy cer-
tain symmetries that form a group, the group of
symmetries of the equations.

Collins ([1]) and later on M. Szydlowsky ([2], we
follow closely this work) have used the inverse way
in order to determine the admissible equations of
state for a system of equations under the restric-
tion that this system admits a determined group of
symmetries i.e. one could a priori assume a sym-
metry group of the Einstein equations and out of
it deduce the condition of integrability which has
the form of the equation of state. In this way the
group of symmetries of the Einstein equations cor-
rectly select physical meaningful equation of state.

Since the bulk viscous theory is constructed as-
suming phenomenological (ad hoc) equations of
state and therefore the equations depend on cer-
tain undetermined numerical constants, we are in-
terested in determining the exact form of such
equations of state imposing the condition that the
field equations admit a concrete symmetry. There-
fore, in this paper, we show that the field equations
of a cosmological flat FRWmodel filled with a bulk
viscous fluid together with a suitable equations of
state admits a certain Lie group of symmetries or,
vice versa, the invariance of the field equations
with respect to a given symmetry group singles
out the corresponding equation of state.

The paper is divided as follows. In section 2 we
outline the general field equations of our model
i.e. a flat FRW bulk viscous fluid and without the
cosmological constant. In section 3 we deduce the
second order ode that governs the model. This dif-
ferential equation has been deduced without any
assumption. One we have outlined the basic ODE,

using the Lie group technique we study this equa-
tion finding that only admits one symmetry but
if we impose that the model admits the scaling
symmetry then we find that this is only possible if
the viscous parameter γ = 1/2 (where the viscos-
ity ξ has been introduced into the field equations
through the ad hoc law ξ = kγρ

γ , and in particu-
lar, we are interested in determining the possible
value(s) of the parameter γ). Once we have estab-
lished that the field equations are scale-invariant
iff γ = 1/2 we are interested in finding the rela-
tionship between Π and ρ (i.e. we are interesting in
determining a new equation of state relating Π and
ρ). For this purpose we try to integrate the result-
ing ODE under the restriction γ = 1/2, following
the standard Lie procedure but unfortunately we
had not been able of obtaining any explicit solu-
tion. Nevertheless we have obtained the invariant
solution (a particular solution) that induces the
scaling symmetry finding in this way a concrete
power law solutions for the main quantities of the
model. In this way we arrive to the conclusion
that Π and ρ has the same order of magnitude
and therefore we find that Π = κρ where κ is a
negative numerical constant. These results are not
new, they have already been obtained by several
author using different methods and they will be
commented in this section.

As we have been able to determine a concrete
relationship between Π and ρ (under the scale-
invariant condition γ = 1/2) in section 4 we inves-
tigate if this condition implies γ = 1/2. For this
purpose, under this hypothesis, we obtain a sec-
ond order ODE that describes all the model and
when studying it with the Lie group method we
find that such equation only admits scaling sym-
metries iff γ = 1/2. We study the resulting ODE
finding the same results than in the above section.
Nevertheless, the assumption Π = κρ, allows us to
obtain a complete solution to the field equations,
this possibility will be show in subsection 4.2.

In section 5 we again study the model as well as
some of the ODE’s that have been arising in the
paper through a pedestrian method, Dimensional
Analysis. In this section we shall show how this
method works in order to obtain the “same” re-
sults but in a trivial way. We end by summarizing
some results.
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2 The model.

For a flat Friedmann-Robertson-Walker (FRW)
Universe with a line element

ds2 = c2dt2 − f2(t)
(
dx2 + dy2 + dz2

)
, (1)

filled with a bulk viscous cosmological fluid the
energy-momentum tensor is given by (see [3])

T k
i = (ρ+ p+Π)uiu

k − (p+Π) δki , (2)

where ρ is the energy density, p the thermo-
dynamic pressure, Π the bulk viscous pressure
(stress) and ui the four velocity satisfying the con-
dition uiu

i = 1. The field equations yield:

2H ′ + 3H2 = −κ (p+Π) , (3)

3H2 = κρ, (4)

ρ′ + 3αρH = −3HΠ, (5)

Π′ +
Π

kγργ−1
= −3ρH − 1

2
Π

(
3H −W

ρ′

ρ

)
, (6)

where

H =
f ′

f
, W =

2ω + 1

ω + 1
= 1 +

ω

α

α = (ω + 1) , κ =
8πG

c2
,

(7)

and where we are assuming the following phe-
nomenological (ad hoc) equation of state (laws)
for p, ξ, T and τ (see [3]):

p = ωρ, ξ = kγρ
γ , T = Dβρ

β , τ = ξρ−1 = kγρ
γ−1,
(8)

where 0 ≤ ω ≤ 1, and kγ ≥ 0, Dβ > 0 are dimen-
sional constants, γ ≥ 0 and β ≥ 0 are numerical
constants. Eq. (p = ωρ) is standard in cosmolog-
ical models whereas the equation for τ is a sim-
ple procedure to ensure that the speed of viscous
pulses does not exceed the speed of light. These
equations are introduced without sufficient ther-
modynamical motivation, but in absence of better
alternatives we shall follow the practice adopting
them in the hope that they will at least provide
indication of the range of possibilities. For the
temperature law T = Dβρ

β which is the simplest
law guaranteeing positive heat capacity.

For a detailed deduction of this model see R.
Maartens ([3])

3 The General equation.

Without any assumption the field eq. (3-6) may
be expressed by a single one

H ′′ −K0H
−1 (H ′)

2
+K1HH ′ +K2H

′H2−2γ

+K3H
3 +K4H

4−2γ = 0, (9)

where

K0 = W = (1 + β) , β =
ω

ω + 1
,

K1 = 3

(
α− αW

2
+

1

2

)
= 3,

K2 = k−1
γ

(
3

κ

)1−γ

=
31−γ

kγκ1−γ
, [K2] = T 1−2γ ,

K3 =
9

2

(α
2
− 1
)
=

9

4
(ω − 1) ,

K4 = k−1
γ

(
3

κ

)1−γ
3α

2
= 32−γ (ω + 1)

kγκ1−γ
, [K4] = T 1−2γ ,

Since [Kγ ] = Lγ−1M1−γT 2γ−1, [κ] = LM−1,
hence: [K2] =

1
T 2γ−1 .

Taking into account the value of the constants Ki

this equations yields:

H ′′ −WH−1 (H ′)
2
+ 3HH ′ +K2H

′H2−2γ

+
9

4
(ω − 1)H3 +K4H

4−2γ = 0, (10)

and if we decide to make the following assumption
kγ = κ = 1 then eq. (10) yields:

H ′′−
(
2ω + 1

ω + 1

)
H−1 (H ′)

2
+3HH ′+31−γH ′H2−2γ

+
9

4
(ω − 1)H3 +

32−γ

2
(ω + 1)H4−2γ = 0. (11)

We go next to study this equation under the Lie
Group technique (see for example [4], [5] and [6]).
For simplicity we have rewrite it in the following
form:

H ′′ −AH−1 (H ′)
2
+ 3HH ′ + CH ′H2−2γ +MH3

+ EH4−2γ = 0. (12)

The standard Lie procedure brings us to obtain the next system of pdes:
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ξHHH +AξH= 0, (13)

Aη + 6ξHH3 + ηHHH2 − 2ξtHH2 −AηHH + 2CξHH4−2γ= 0, (14)

2ηHtH − ξttH + 3ηH + 3ξtH
2 + 3MξHH4 + CξtH

3−2γ + 3EξHH5−2γ + (2− 2γ)CηH2−2γ − 2Aηt= 0, (15)

3MηH +MH2 (2ξt − ηH) + (4− 2γ)EηH2−2γ + CηtH
1−2γ + (2ξt − ηH)EH3−2γ + ηttH

−1 + 3ηt= 0, (16)

this system admits the following symmetry

ξ = 1, η = 0 =⇒ X1 = ∂t, (17)

since X1 span an algebra L1 the equation cannot
be completely integrated by the Lie group method.

But if we try to check if the system admits a scal-
ing symmetry

ξ = t, η = −H, (18)

this is only possible iff γ = 1/2. Therefore

ξ = at+ b, η = −aH, (19)

is a symmetry of the ODE iff γ = 1/2, and where a
and b are numerical constants i.e. a, b ∈ R. Hence

X1 = ∂t, X2 = t∂t −H∂H , [X1, X2] = X1, (20)

which span a solvable Lie algebra L2 of the type
III.

At the same result have arrived for example
A.A.Coley et al ([7]), who study this model from
a dynamical system approach. To apply this
method they rewrite the field equations in a di-
mensionless way in such a form that this is only
possible iff γ = 1/2 and the viscous pressure and
the energy density has the same order of magni-
tude as we will see in the next section. At sim-
ilar conclusions R. A. Daishev and W. Zimdahl
have arrived in ([8]), where these authors study
this model from the homothetic (similarity) point
of view i.e. they study when the field equations
remain self-similar. As we will see below we have
obtained the same results but using the Lie group
method. Finally Belinchón et al ([9]) have ob-
tained the same results using the renormalization
group approach.

The canonical variables and the reduced ODE that
induces the symmetry X1 are:

y(x) =
1

H′ , x = H, (21)

y′ =
(
Mx3 + Ex4−2γ

)
y3 +

(
3x+ Cx2−2γ

)
y2 −A

y

x
,

(22)

which is an Abel ODE (see [10]). Without any
assumption it is very difficult to find any explicit
solution of this equation and therefore a solution
of eq. (12)

3.1 The case with γ = 1/2, scale in-
variant solution.

As we can see, the ODE (12) admits a scaling
symmetry iff γ = 1/2 and in this case such ODE
is reduced to:

H ′′−WH−1 (H ′)
2
+
(
3 +

√
3
)
HH ′+

(9
4
(ω − 1)

+
3
√
3

2
(ω + 1)

)
H3 = 0, (23)

or equivalently

H ′′ −AH−1 (H ′)
2
+BHH ′ + CH3 = 0, (24)

where obviously it admits the symmetries

X1 = ∂t, X2 = t∂t −H∂H , [X1, X2] = X1, (25)

which form a L2 algebra etc..

Symmetry X1 brings us to the following ODE
through the reduction (canonical variables)

y(x) =
1

H ′ , x = H, (26)

y′ =

(
9

4
(ω − 1) +

3
√
3

2
(ω + 1)

)
x3y3 +

(
3 +

√
3
)

× xy2 −W
y

x
, (27)

y′ = Cx3y3 +Bxy2 −A
y

x
, (28)

which is an Abel ODE. This ODE admits the fol-
lowing symmetry

X̃ = x∂x − 2y∂y, (29)

which is a scaling symmetry and it induces the
following change of variables,

r = x2y, s(r) = ln(x), ⇒ x = es(r), y =
r

e2s(r)
,

(30)
which brings us to obtain the next ODE in quadra-
tures
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s′ =
1

r (Cr2 +Br + 2−A)
, (31)

and which solution is:

s(r) = − ln r

A− 2
+

1

2

ln
(
Cr2 +Br + 2−A

)
A− 2

−
B arctanh

(
2Cr+B√

B2+4C(A−2)

)
(A− 2)

√
B2 + 4C(A− 2)

+ C1, (32)

and hence in the original variables (x, y):

lnx = −
ln
(
x2y
)

A− 2
+

1

2

ln
(
Cx4y2 +Bx2y + 2−A

)
A− 2

−
B arctanh

(
2Cx2y+B√
B2+4C(A−2)

)
(A− 2)

√
B2 + 4C(A− 2)

+ C1, (33)

therefore we have obtained the next ODE in the (H, t) variables:

lnH = −
ln
(

H2

H′

)
A− 2

+
1

2

ln

(
C
(

H2

H′

)2
+B

(
H2

H′

)
+ 2−A

)
A− 2

−
B arctanh

(
2C H2

H′ +B√
B2+4C(A−2)

)
(A− 2)

√
B2 + 4C(A− 2)

+ C1, (34)

but we do not know how to obtain an “explicit”
solution of this ODE i.e. a solution of the form
H = H(t). Possibly the most general solution to
this equation may result unphysical as we have
pointed out in the case of a perfect fluid (see the
appendix of ([11])).

3.1.1 Invariant solution

In this case we can try to find a particular solution
of eq. (23) through the invariant solution that
induces the scaling symmetry X2 = [at,−aH] . In
such case we find that

dt

ξ
=

dH

η
=⇒ H =

a

t
, a ∈ R, (35)

which satisfies the eq. (23) iff a = a(ω), i.e.

a =
B ±

√
B2 + 4C(A− 2)

2C

⇔ a =

(
3 +

√
3
)
±
√
12− 9ω−1

ω+1

9
2 (ω − 1) + 3

√
3 (ω + 1)

,

(36)

In this case, it is observed that

ρ =
3

κ
H2, Π = − 2

κ
H ′ − 3α

κ
H2 =

(
2

3
− α

)
ρ,

(37)
therefore

Π ≈ ρ ⇒ Π = κρ, κ =

(
2

3
− α

)
∈ R−, (38)

i.e. we have found that the viscous pressure and
the energy density have the same order of mag-
nitude and hence we can define a new equation
of sate Π = κρ where for physical reasons the nu-
merical constants κ must be negative. Note that if
ω = 1, then κ = − 4

3 . At the same result R. A. Dai-
shev and W. Zimdahl have arrived ([8]) through a
very different way. Nevertheless in our solution it
is observed that κ can take other values.

Note that both quantities have the same dimen-
sional equation i.e. [Π] = [ρ] and that for this
reason under a scaling transformation the dimen-
sionless quantity Π

ρ must be remain constant (see
the pioneering work in this field of D. M. Eardly
[12], and the latter of K. Rosquits and R. Jantzen
[13], and J. Wainwright [14]). Under the action of
a similarity, each physical quantity ϕ transforms
according to it dimension q under scale transfor-
mations i.e. changes of the unit of length. Thus
if unit of length L transforms as L −→ λL then
ϕ −→ λqϕ. This means that dimensionless quan-
tities are invariant under a similarity transforma-
tion. Dimensionless quantities are therefore space-
times constants. This implies that two quantities
with the same dimensions, for example Π and ρ
or p and ρ are related through equations of state
of the form Π = κρ or p = ωρ since the ratios
Π
ρ or p

ρ must be constants. Furthermore, as J.
Wainwright have pointed out, spacetimes admit-
ting transitively self-similarity groups correspond
exactly to the exact power law solutions as we have

57



J. A. Belinchón, 36 (2022) 53-63

found.

In the same way we can try to find a particular
solution of eq.(28) that induces the symmetry X̃ =
x∂x − 2y∂y. Therefore we find that

dx

x
= −dy

2y
⇒ y =

ã

x2
, (39)

is a solution of eq. (28) iff

ã =
−B ±

√
B2 + 4C(A− 2)

2C
, (40)

note that ã = −a. Now tanking into account the
change of variables

(
y(x) = 1

H′ , x = H
)
it is found

that
1

H ′ =
ã

H2
⇒ H =

a

t
, (41)

where a is given by eq. (36).

3.1.2 The case with γ = 1/2, scale invariant
solution and ω = 1, stiff matter.

We shall study the equation

H′′ −
3

2
H−1

(
H′)2 +

(
3 +

√
3
)
HH′ + 3

√
3H3 = 0,

(42)

which is a special case of eq. (23). (canonical
variables)

y(x) =
1

H ′ , x = H, (43)

y′ = 3
√
3x3y3 +

(
3 +

√
3
)
xy2 − 3

2

y

x
, (44)

which is an Abel ODE. The following change of
variables brings us to obtain the next new ODE

s(r) = −2 lnx, r = yx2 ⇒ x = e−1/2s(r), y =
r

e−1/s(r)
,

(45)

s′ = − 4

r
(
1 + 3

√
3r2 + 2

(
3 +

√
3
)
r
) , (46)

and which solution is:

s =
2
√
3 ln

(
6r +

√
3− 1

)
√
3− 1

− 8
√
3 ln r(√

3− 1
) (√

3 + 3
) − 2

√
3 ln

(
6r +

√
3 + 3

)
√
3 + 3

, (47)

−2 lnx =
2
√
3 ln

(
6yx2 +

√
3− 1

)
√
3− 1

−
8
√
3 ln

(
yx2
)(√

3− 1
) (√

3 + 3
) − 2

√
3 ln

(
6yx2 +

√
3 + 3

)
√
3 + 3

, (48)

and hence

−2 lnH =
2
√
3 ln

(
6H2

H′ +
√
3− 1

)
√
3− 1

−
8
√
3 ln

(
H2

H′

)
(√

3− 1
) (√

3 + 3
) − 2

√
3 ln

(
6H2

H′ +
√
3 + 3

)
√
3 + 3

, (49)

The invariant solution that we can find in this case is:

H =
a

t
, a ∈ R, (50)

which satisfies the eq. (42) iff

a =

(
3 +

√
3
)
±
√
12

6
√
3

=

{
1
2 +

√
3
6 = 0.7886751351,

− 1
6 +

√
3
6 = 0.122008468.

(51)

4 The case Π = κρ.

Since under a scale transformation we have found
that the viscous parameter must be γ = 1/2, and
that in such case Π = κρ, now we are interested in

studying the inverse way i.e. if under the hypoth-
esis Π = κρ, the resulting differential equation re-
mains scale invariant. For this purpose we rewrite
the field eq. (3-6) under the assumption Π = κρ.
In this way the field equations may be expressed
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by the following ODE:

ρ′′ =
ρ′2

ρ
−Aβρβρ′ +Bρ2, (52)

with (1− γ) = β and

A = D−1k−1
γ =

2 (ω + 1)

kγ
,

[A] = [kγ ]
−1

= L1−γMγ−1T 1−2γ ,

B =
κϖ

2δD
=

κ (ω + 1 + κ) (ω + 1) (6 + 3κ)
2κ

,

[B] = [κ] = LM−1,

ϖ = (α+ κ), α = (ω + 1) , δ =
2κ

6 + 3κ
,

D =

(
1− W

2

)
=

1

2 (ω + 1)
.

The Lie analysis of equation (52) brings us to ob-
tain the following system of pdes

ξρρ + ρ−1ξρ = 0, (53)

ηρ−2 − ηρρ
−1 + (ηρρ − 2ξtρ) + 2ξρAβρβ = 0, (54)

(2ηtρ − ξtt) + ξtAβρβ − 3ξρBρ2 − ηt2ρ
−1

+ηAβ2ρβ−1 = 0,
(55)

−η2Bρ+ ηtt + ηρBρ2 − 2ξtBρ2 + ηtAβρβ = 0, (56)

we solve eqs. (53-56), finding that this system only
admits the symmetry

X1 = ∂t. (57)

Now, if we try to check if the system admits a
scaling symmetry

X2 = aβt∂t + aρ∂ρ, a ∈ R, (58)

we see with the help of eq. (56) that

−2Aaρ2 +Aaρ2 + 2aβAρ2 = 0, (59)

finding in this way that

−1 + 2β = 0 ⇐⇒ β =
1

2
, (60)

where β = (1− γ) , that is to say γ = 1
2 .

ξ(ρ, t) = −a

2
t+ b, η(ρ, t) = aρ, (61)

Therefore as we can see the ODE only admits a
single symmetry X1 = ∂t, but if we impose that

the ODE admits a scaling symmetry, we have seen
that this is only possible if γ = 1

2 . Therefore iff
γ = 1

2 the ODE admits two symmetries:

X1 = ∂t, X2 = t∂t − 2ρ∂ρ, [X1, X2] = X1, (62)

where X2 is the generator of the scaling group.
Hence we can conclude that the assumption Π =
κρ does not imply that the resulting field equa-
tions must be scale invariant, this is only possible
if γ = 1

2 .

The symmetry X1 brings us to obtain through the
canonical variables the following Abel ODE:

y′ = −Bx2y3 +Aβxβy2 − y

x
, (63)

where

x = ρ, y =
1

ρ′
. (64)

4.1 Equation (52) with γ = 1/2.

The equation (52) with γ = 1/2 yields

ρ′′ =
ρ′2

ρ
− A

2

√
ρρ′ +Bρ2, (65)

where
[
A2
]
= [B] .

The symmetry X1 brings us to obtain through the
canonical variables the following Abel ODE:

y′ = −Bx2y3 +
A

2

√
xy2 − y

x
, (66)

where

x = ρ, y =
1

ρ′
, (67)

We would like to point out that eq. (66) admits
the following scaling symmetry

X̃ = x∂x − 3

2
y∂y, (68)

which induces the following change of variables

r = yx3/2, s(r) = lnx ⇒ y =
r

e3s(r)/2
, x = es(r),

(69)
in such a way that eq. (66) yields

s′ =
2

r (1 + rA− 2r2B)
, (70)

where the solution of eq. (70) is:

s(r) = 2 ln r − ln
(
1 + rA− 2r2B

)
+

2arctanh
(

A−4rB√
A2+8B

)
√
A2 + 8B

+ C1, (71)
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hence

lnx = 2 ln
(
yx3/2

)
− ln

(
1 +

(
yx3/2

)
A− 2

(
y2x3

)
B
)
+

2arctanh

(
A−4(yx3/2)B√

A2+8B

)
√
A2 + 8B

+ C1, (72)

and tanking into account the change of variables (67) yields

ln ρ = 2 ln

(
ρ3/2

ρ′

)
− ln

(
1 +

(
ρ3/2

ρ′

)
A− 2

(
ρ3

ρ′2

)
B

)
+

2arctanh

A−4

(
ρ3/2

ρ′

)
B

√
A2+8B


√
A2 + 8B

+ C1, (73)

which is a quadrature, but unfortunately we do
not know how to obtain an “explicit” solution for
this ODE as in the above case.

4.1.1 Invariant solution

The invariant solution is obtained for a ̸= 0 For
this value of a eq. (65) admits a single symmetry

ξ (t, ρ) = at∂t, η (x, y) = −2aρ∂ρ, (74)

the knowledge of one symmetry X might suggest
the form of a particular solution as an invariant of
the operator X i.e. the solution of

dt

ξ (t, ρ)
=

dρ

η (t, ρ)
, (75)

this particular solution is known as an invariant
solution (generalization of similarity solution). In
this case

ρ = ρ0t
−2, / ρ0 =

1

2

4B +A2 ±A
√
(8B +A2)

B2
,

(76)
where

A = 2 (ω + 1) , B =
(ω + 1 + κ) (ω + 1) (6 + 3κ)

2κ
,

(77)
with kγ = κ = 1 and making ω = 1

A = 4, B = 3
(2 + κ)2

κ
, (78)

A particular solution of eq. (66) may be found
by taking into account the symmetry X̃ = x∂x −
3
2y∂y. In this case

3
dx

x
= −2

dy

y
⇒ y =

a

x3/2
, (79)

and taking into account the change of variables(
x = ρ, y = 1

ρ′

)
it is founded the already known

solution ρ = ρ0t
−2.

4.2 The General solution.

In this case, the assumption Π = κρ allows us to
obtain a complete solution to the field equations
(3-6).

If we take into account eq. (6) with the assump-
tion Π = κρ, it yields:

κρ′ + κk−1
γ ργ−2 = −

1

(α+ κ)
ρ′ +

κ
2

1

(α+ κ)
ρ′ +

κW
2

ρ′,

(80)
where H has been obtained from eq. (5) and fol-
lows the relationship

H = − 1

3 (α+ κ)
ρ′

ρ
. (81)

Simplifying eq. (80) it yields(
κ +

1

α+ κ
−

κ
2 (α+ κ)

−
κW
2

)
ρ′ = −κk−1

γ ργ−2,

(82)
which trivial solution is:

ρ = ρ0t
− 1

1−γ , (83)

where

ρ0 =
−κk−1

γ(
κ + 1

α+κ − κ
2(α+κ) −

κW
2

) . (84)

In this way we have obtained a complete solution
for the field equations (3-6) and valid for all value
of γ. It is obvious that when γ = 1/2 then we
recover our previous solution ρ = ρ0t

−2.
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5 A Pedestrian Method.

In this section we would like to show how dimen-
sional Analysis works in order to obtain the same
results but in a trivial way (see for example [15],
[16], [17], and [18]). In the first place we will show
how by writing the field equations in a dimension-
less way we can determine the exact value of the
parameter γ which remains the equations scale in-
variant. In second place we would like to show
how to solve some of the different ODE’s that have
arisen in this paper.

Writing the field equations (3-6) in a dimension-
less way and taken into account the following
equations of state (8) it is obtained the following
π −monomia (see [19]):

π1 =
Gpt2

c2
, π2 =

GΠt2

c2
, π3 =

Gρt2

c2
,

π4 =
Π

p
π5 =

ξ

Πt
,

(85)

π6 =
τ

t
= τH, π7 =

ξ

kγργ
, π8 =

ξ

τρ
,

π9 =
T

Dβρβ
, π10 =

ρ

p
,

(86)

it is observed that from π7 = ξ
kγργ and π8 = ξ

τρ

we obtain

π̃8 =
kγρ

γ−1

t
, (87)

and from π3 and π̃8

Gρt2

c2
=

kγρ
γ−1

t
⇒ ρ =

(
t

kγ

)1/(γ−1)

, (88)

therefore

c2

Gt
=

(
t

kγ

)1/(γ−1)

⇒
kbγc

2

G
= tb+2, (89)

where b = 1/(γ − 1), it is observed that the only
case and only for this, γ = 1/2, we obtain the re-
lationship k2γ = c2/G. If γ ̸= 1/2 the “constants”
G or c must vary or we need to impose the condi-
tion G/c2 = const. (if both constants vary) if we
want our equations to remain scale invariant as we
have showed in an earlier paper (see [20]) where
we studied a viscous model with G time-varying.
In such work we arrived to the conclusion that if
γ = 1/2, G must be constant in spite of consider-
ing it as a function that vary on time t, since we

were only interested in the self-similar solution of
that model.

Now we go next to solve some of the differential
equations that have arisen in this paper through
the Dimensional technique.

We begin studying eq. (24) i.e.

H ′′ −AH−1 (H ′)
2
+BHH ′ + CH3 = 0 (90)

which verifies the principle of dimensional homo-
geneity taking into account the dimensional base
B = {T} . In this case we trivially arrive to the so-
lution H ∝ t−1 since [H] = T−1. Note that D.A.
(Pi theorem) does not understand numerical con-
stants only of orders of magnitude.

In second place we study eq. (28)

y′ = Cx3y3 +Bxy2 −A
y

x
, (91)

with respect to the dimensional base B = {T} .
This ODE verifies the principle of dimensional ho-
mogeneity with respect to this dimensional base.
Note that [y] =

[
1
H′

]
= T 2, and [x] = [H] = T−1

hence [y′] = T 3. Therefore rewriting the equation
in a dimensionless way we find that y ∝ x−2

But if we study this equation with respect to the
dimensional base B = {X,Y } , we need to intro-
duce new dimensional constants that make that
the equation verifies the principle of dimensional
homogeneity

y′ = αCx3y3 + βBxy2 −A
y

x
(92)

where
[
α1/2

]
= [β] = X−2Y −1, hence

y β x
X 0 −2 1
Y 1 −1 0

⇒ y ∝ β

x2
, (93)

As we can see we have obtained the same solution
than in the case of the invariant solution. This
is because the invariant solution that induces a
scaling symmetry is the same as the obtained one
through the Pi theorem.

We would like to emphasize that D.A. brings us to
obtain change of variables (c.v.) (see [21] for more
details) which allows us to obtain ODE’s simplest
than the original one. In this case, it is observed
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that [β] = X−2Y −1 in such a way that we have
the c.v.(

t = x, u(t) = βx2y
)
⇒
(
x = t, y =

u

βt2

)
,

(94)

therefore eq. (92) yields:

tu′ = u
(
u2 + u+ 1

)
, (95)

and hence

ln t+
1

2
ln
(
u2 + u+ 1

)
+

√
3

3
arctan

((
3

2
u+

1

3

)√
3

)
− lnu+ C1 = 0, (96)

in the original variables it yields

lnx+
1

2
ln
((

ax2y
)2

+ ax2y + 1
)
+

√
3

3
arctan

((
3

2

(
ax2y

)
+

1

3

)√
3

)
− ln

(
ax2y

)
+ C1 = 0. (97)

In the same way we can study eq. (65) .

ρ′′ =
ρ′2

ρ
− A

2

√
ρρ′ +Bρ2, (98)

where
[
A2
]
= [B] = LM−1, with respect to the

dimensional base B = {L,M, T} . Therefore it is
found

ρ B t
L −1 1 0
M 1 −1 0
T −2 0 1

=⇒ ρ ∝ 1

Bt2
.

To end we study eq. (66)

y′ = −Bx2y3 +
A

2

√
xy2 − y

x
, (99)

where
[
A2
]
= [B] = X−3Y −2, with respect to

the dimensional base B = {X,Y } . Therefore it is
found

y B x
X 0 −2 1
Y 1 −1 0

=⇒ y ∝
√

1

Bx3
, (100)

as already we know.

6 Conclusions

In this paper we have studied the possible symme-
tries that admits a flat FRW model filled with a
bulk viscous fluid. Using the Lie group method we
have tried to find an adequate equation of state
for the viscous parameter as well as for the vis-
cous pressure. Therefore we conclude that the field
equations remain scale invariant iff γ = 1/2 and

that for this parameter it is found that Π = κρ.
But that the hypothesis Π = κρ does not imply
that the field equations remain scale invariant, this
only occurs if γ = 1/2.Furthermore, the assump-
tion Π = κρ brings us to obtain a complete solu-
tion to the field equations valid for all γ.
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